Skip to main content

Part of the book series: NATO ASI Series ((ASIG,volume 16))

Abstract

A detailed hydrogen ion budget has been constructed for the Marcell bog in north-central Minnesota based on a 5-year, intensive study of element cycles. Major features of the acidity balance for this site include the following: (1) production of organic acids (263 meg.m−2.y−1) is the dominant source of acidity and serves to buffer the bog water at pH 4; (2) seguestering of elements in peat is also a significant source of acidity (42.9 meg.m−2.y−1); (3) weathering of dustfall inputs is an important source of alkalinity (<76 meg.m−2.y−1) at this site which is situated near the major agricultural area of the plains; (4) nitrate and sulphate reduction contribute little alkalinity (<39.2 meg.m−2.y−1) because inputs (NO3 and SO4) to this bog are low. Analysis of peat and surface water from bogs across northeastern North America (Manitoba to Newfoundland) reveals the following: (1) production of organic acids across this region varies between 104 and 263 meg.m−2.y−1; (2) acidity-generation associated with net biological uptake (NBU, excluding nitrogen = 20–117 meg.m−2.y−1) varies in proportion to the rate of peat accumulation; (3) NBU-acidity exhibits high values in maritime bogs and lower values in mid-continental bogs; (4) bogs have a large capacity for sulphate reduction, and sulphate reduction becomes an increasingly important source of alkalinity as rates of sulphate deposition increase. From 60 to 93% of annual sulphate loadings are retained as reduced sulphur in bogs across eastern North America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban DH (1982) Effects of nutrient accumulation by aspen, spruce, and pine on soil properties. Soil Sci Soc Am J 46:854–861

    Article  Google Scholar 

  • Barrie LA, Sirois A (1982) An analysis and assessment of precipitation chemistry measurements made by CANSAP, 1977–1980. Env Can Report AQRB-82–003-T

    Google Scholar 

  • Binns WO (1984) Vegetation and soils, Sec 2. In: Acid rain, Report #14, Watt Committee on Energy, London

    Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soils analysis, Am Soc Agron Inc, Madison, p 1149–1177

    Google Scholar 

  • Buttleman CG (1982) Use of Rb/K ratio to define nutrient linkages between a perched bog and its surrounding upland. MSc Thesis, Uni of Minnesota, p 143

    Google Scholar 

  • Canadian Climate Normals (1980) Vol 9, Env Can

    Google Scholar 

  • Chen CW, Gherine SA, Dean JD, Hudson R, Goldstein RA (1984) Development and calibration of the integrated lake-watershed acidification study model. In: Schnoor JL (ed) Modeling of total acid precipitation impacts. Butterworth Publishers, Boston, p 175–204

    Google Scholar 

  • Climate of Southern Ontario (1980) Climatological Studies #5, Env Can

    Google Scholar 

  • Clymo RS (1964) The origin of acidity in Sphagnum bogs. Bryologist 67: 427–431

    Google Scholar 

  • Clymo RS (1967) Control of cation concentrations and in particular of pH in Sphagnum dominated communities. In: Golterman HL, Clymo RS (eds) (1967) Chemical habitat Proc IBP Symp, Amsterdam and Nieuwersluis, 10–16 Oct 1966, NV Noord-Hollandsche Vitgeuers Maatschappij, Amsterdam, p 322

    Google Scholar 

  • Clymo RS (this volume) Interactions of Sphagnum with water and air.

    Google Scholar 

  • Driscoll CT, Likens GE (1982) Hydrogen ion budget of an aggrading forested ecosystem. Tellus 34: 283–292

    Article  CAS  Google Scholar 

  • Eisenreich SJ, Hollod GJ, Langevin S (1978) Precipitation chemistry and atmospheric deposition of trace elements in northeastern Minnesota. Minnesota Envir Qual Council

    Google Scholar 

  • El-Daoushy F, Tolonen K, Rosenberg R (1982) Lead-210 and moss-increment dating of two Finnish Sphagnum hummocks. Nature 296: 429–431

    Article  CAS  Google Scholar 

  • Farnsworth RK, Thompson ES (1982) Mean monthly, seasonal, and annual pan evaporation for the United States. NOAA Tech Rep NWS 34

    Google Scholar 

  • Gorham E (1967) Some chemical aspects of wetland ecology. Proc 12th Annual Muskeg Research Conf, Calgary, p 20–38

    Google Scholar 

  • Gorham E, Vitousek PM, Reiners WA (1979) The regulation of chemical budgets over the course of terrestrial ecosystem succession. Ann Rev Ecol Syst 10: 53–84

    Article  CAS  Google Scholar 

  • Gorham E, Bayley SE, Schindler DW (1984) Ecological effects of acid deposition upon peatlands: a neglected field in acid-rain research. Can J Fish Aquat Sci 41: 1256–1268

    Article  CAS  Google Scholar 

  • Gorham E, Eisenreich SJ, Ford J, Santelmann MV (1985) The chemistry of bog waters. In: Stumm W (ed) Chemical processes in lakes. John Wiley and Sons, New York, p 339

    Google Scholar 

  • Grigal DF (1985) Sphagnum produetion in forested bogs of northern Minnesota. Can J Bot 63: 1204–1207

    Article  Google Scholar 

  • Grigal DF, Buttleman CG, Kernik LK (1985) Biomass and produetivity of the woody strata of forested bogs in northern Minnesota. Can J Bot 63: 2416–2424

    Article  Google Scholar 

  • Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecol Monogr 50: 507–526

    Article  CAS  Google Scholar 

  • Hemond HF (1983) The nitrogen budget of Thoreau’s Bog. Ecology 64: 99–109

    Article  Google Scholar 

  • Kelly JR, Harwell MA (1982) Comparisons of the processing of elements by ecosystems: I. Nutrients. Ecosys Res Ctr Report No 21, Cornell University

    Google Scholar 

  • Kelly CA, Rudd JW, Cook RB, Schindler DW (1982) The potential importance of bacterial processes in regulating rate of lake acidification. Limnol Oceanogr 27: 868–882

    Article  CAS  Google Scholar 

  • Kerekes J (1984) Review of the regional aquatic program. Proc of Atlantic Region LRTAP Monitoring and Effects Working Group, Bedford Inst Oceanogr, Dartmouth, NS

    Google Scholar 

  • Kilham P (1982) Acid precipitation: its role in the alkalization of a lake in Michigan. Limnol Oceanogr 27: 856–867

    Article  CAS  Google Scholar 

  • Kilham P (1983) The biogeochemistry of bog ecosystems and the chemical ecology of Sphagnum. Mich Bot 21: 159–168

    Google Scholar 

  • Krug EC, Frink CR (1983) Acid rain on acid soil: a new perspective. Science 221: 520–525

    Article  PubMed  CAS  Google Scholar 

  • Lee JA, Press MC, Woodin S, Ferguson P (this volume) Responses to acidic deposition in ombrotrophic mires in the U.K.

    Google Scholar 

  • Likens GE, Bormann FH, Johnson NM (1981) Interactions between major biogeochemical cycles in terrestrial ecosystems. In: Likens GE (ed) Some perspectives of the major biogeochemical cycles, John Wiley and Sons, New York, p 93

    Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biogeochemistry of a forested ecosystem. Springer-Verlag, New York, p 146

    Book  Google Scholar 

  • Malmer N, Holm E (1984) Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with Pb-210. Oikos 43: 171–182

    Article  CAS  Google Scholar 

  • Martin NJ, Holding AJ (1978) Nutrient availability and other factors limiting microbial activity in the blanket peat. Chap 6 In: Perkin DF and Heal OW (eds), British Moors and Montane Grasslands, Ecol Studies 27: 113–135

    Chapter  Google Scholar 

  • McKnight D, Thurman E, Wershaw R, Hemond H (1985) Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Mass., Ecology 66: 1339–1352.

    Article  CAS  Google Scholar 

  • Munger JW (1981) Environmental controls and ecological consequences of regional precipitation chemistry in Minnesota. MSc. Thesis, Uni of Minnesota, p 154

    Google Scholar 

  • Munger JW (1982) Chemistry of atmospheric precipitation in the north-central US: influence of sulfate, nitrate, ammonia and calcareous soil particulates. Atmos Env 16: 1633–1645

    Article  CAS  Google Scholar 

  • Munger JW, Eisenreich SJ (1983) Continental-scale variations in precipitation chemistry. Envir Sci Tech 17: 32A-42A

    Article  CAS  Google Scholar 

  • Nilsson IS, Miller HG, Miller JD (1982) Forest growth as a possible cause of soil and water acidification: an examination of the coneepts. Oikos 39: 40–49

    Article  Google Scholar 

  • Oldfield F, Appleby P, Cambray R, Eakins J, Barber K, Battarbee R, Pearson G, Williams J (1979) Pb-210, Cs-137, and Pu-239 profiles in ombrotrophic peat. Oikos 33: 40–45

    Article  CAS  Google Scholar 

  • Oliver BG, Thurman EM, Malcolm RL (1983) The contribution of humic substances to the acidity of colored natural waters. Geochim et Cosmochim Acta 47: 2031–2036

    Article  CAS  Google Scholar 

  • Pastor J, Bockheim JG (1984) Distribution and cycling of nutrients in an aspen-mixed hardwood spodosol ecosystem in Northern Wisconsin. Ecol 65: 339–353

    Article  CAS  Google Scholar 

  • Perdue EM, Lytle CR (1983) Distribution model for binding of protons and metal ions by humic substances. Envir Sci Tech 17:654–661

    Article  CAS  Google Scholar 

  • Press CM, Lee JA (1982) Nitrate reduetase activity of Sphagnum species in the south Pennines. New Phytol 92: 487–494

    Article  CAS  Google Scholar 

  • Rapaport RA, Urban NR, Capel PD, Baker JE, Looney BB, Eisenreich SJ, Gorham E (1985) New DDT inputs to North America: Atmospheric Deposition. Chemosphere 14: 1167–1173

    Article  CAS  Google Scholar 

  • Ramaut J (1954) Modificatons de pH apportees par la tourbe et le Sphagnum secs aux Solutions salines et a l’eau bidistillee. Bulletin de l’Acad Roy de Belgique (Classe Des Sciences), Bruxelles, Ser 5 Vol 40, p 305–315

    CAS  Google Scholar 

  • Rosenqvist IT (1978) Alternative sources for acidification of river water in Norway. Sci Total Envir 10: 39–49

    Article  CAS  Google Scholar 

  • Rosswall T, Granhall U (1980) Nitrogen cycling in a subarctic ombrotrophic mire. In: Sonesson M (ed), Ecology of a subarctic mire. Ecol Bull 30: 209–234

    Google Scholar 

  • Ruffner JA (1978) Climates of the states. Gale Research Co, Detroit, p 1185

    Google Scholar 

  • Schindler DW (1981) Interrelationships between the cycles of elements in freshwater ecosystems. In: Likens GE (ed) Some perspectives of the major biogeochemical cycles. John Wiley and Sons, New York, p 113

    Google Scholar 

  • Schnoor JL, Palmer WD, Glass GE (1984) Modeling impacts of acid precipitation for Northeastern Minnesota. In: Schnoor JL (ed) Modeling of total acid precipitation impacts. Butterworth Publishers, Boston, p 155

    Google Scholar 

  • Schurr KT (1983) Biogeochemistry of selected metals in a forested Sphagnum bog in Minnesota. MSc Thesis, Uni of Minnesota

    Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14: 799–801

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ, Schnoor JL (1983) Sauer Regen, eine Folge der Storung hydrochemischer Kreislaufe. Naturewissenschaften 70:216–223

    Article  CAS  Google Scholar 

  • Thomas MK (1953) Climatological atlas of Canada. Natural Res Council Can, No 3151, Ottawa

    Google Scholar 

  • Thornton JD, Eisenreich SJ (1982) Impact of land-use on the acid and trace metal element composition of precipitation in the north central United States. Atmos Envir 16: 1945–1955

    Article  CAS  Google Scholar 

  • Timmons DR, Verry ES, Burwell RE, Holt RF (1977) Nutrient transport in surface runoff and interflow from an aspen-birch forest. J Envir Qual 6: 188–192

    Article  CAS  Google Scholar 

  • Urban NR (1983) The nitrogen cycle in a forested bog watershed in northern Minnesota. MSc Thesis, Uni of Minnesota, p 359

    Google Scholar 

  • Verhoeven JT, van Beek S, Dekker M, Storm W (1983) Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. Oecologia 60: 25–33

    Article  Google Scholar 

  • Verry ES (1975) Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota. Ecol 56: 1149–1157

    Article  CAS  Google Scholar 

  • Verry ES (1983) Precipitation chemistry at the Marcell experimental forest in north central Minnesota. Water Resources Res 19: 454–462

    Article  CAS  Google Scholar 

  • Verry ES (1984) Microtopography and water table fluetuation in a Sphagnum mire. In: Proc 7th Internat Peat Congress, Dublin

    Google Scholar 

  • Verry ES, Timmons DR (1977) Precipitation nutrients in the open and under two forests in Minnesota. Can J For Res 7: 112–119

    Article  CAS  Google Scholar 

  • Verry ES, Timmons DR (1982) Water-borne nutrient flow through an uplant-peatland watershed in Minnesota. Ecol 63: 1456–1467

    Article  CAS  Google Scholar 

  • Wollast R (1981) Interactions between major biogeochemical cycles in marine ecosystems. In: Likens GE (ed) Some Perspectives of the Major Biogeochemical Cycles. John Wiley and Sons, New York, p 125

    Google Scholar 

  • Woodin SJ, Press MC, Lee JA (1985) Nitrate reductase activity in Sphagnum fuscum in relation to wet deposition of nitrate from the atmosphere. New Phytol 99: 381–388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urban, N.R., Eisenreich, S.J., Gorham, E. (1987). Proton Cycling in Bogs: Geographic Variation in Northeastern North America. In: Hutchinson, T.C., Meema, K.M. (eds) Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70874-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70874-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70876-3

  • Online ISBN: 978-3-642-70874-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics