Skip to main content

Representation of Visual World in the Striate Cortex

  • Conference paper
Supramolecular Structure and Function

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 94 Accesses

Abstract

This article roughly corresponds to my second lecture on the subject of vision presented at the Summer School. In the first lecture, I have described basic design and operation of visual pathways from the retina to the primary visual area VI of the visual cortex. Many excellent descriptions of this subject exist in the literature (e.g. Kuffler and Nicholls 1976), and I shall here introduce only the basic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow HB (1981) Critical limiting factors in the design of the eye and the visual cortex. Proc R Soc London Ser B 212: 1–34

    Article  ADS  Google Scholar 

  • Burr D, Morrone C, Maffei L (1981) Intra-cortical inhibition prevents simple cells from responding to textured visual patterns. Exp Brain Res 43: 455–458

    Article  Google Scholar 

  • Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol (London) 197: 551–566

    Google Scholar 

  • Daugman JG (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res 20: 847–856

    Article  Google Scholar 

  • Daugman JG (1983) Six formal properties of two-dimensional anisotropic visual filters: Structural principles and frequency/orientation selectivity. IEEE Trans SMC 13: 882–887

    Google Scholar 

  • Daugman JG (1984) Spatial visual channels in the Fourier plane. Vision Res 24: 891–909

    Article  Google Scholar 

  • Davenport WB, Root WL (1958) Random signals and noise. McGraw Hill, New York

    MATH  Google Scholar 

  • Davis MJ, Heller EJ (1979) Semicalssical Gaussian basis set method for molecular vibrational wave functions. J Chem Phys 71: 3383–3395

    Article  ADS  Google Scholar 

  • De Valois KK, Tootell RBH (1983) Spatial frequency-specific inhibition in cat striate cortex cells. J Physiol (London) 336: 359–376

    Google Scholar 

  • De Valois RL, Albrecht DG, Thorell (1978) Cortical cells: Bar and edge detectors, or spatial frequency filters. In: Cool SJ, Smith EL (eds) Frontiers in visual Science. Springer, Berlin Heidelberg New York, pp 544–556

    Google Scholar 

  • De Valois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vision Res 22:545 –559

    Article  Google Scholar 

  • Emerson RC, Gerstein GL (1977) Simple striate neurons in the cat II. Mechanism underlying directional asymmetry and directional selectivity. J Neurophysiol 40: 136–155

    Google Scholar 

  • Foster KH, Gaska JP, MarSelja S, Pollen DA (1983) Phase relationships between adjacent simple cells in the feline visual cortex. J Physiol (London) 344: 26 P

    Google Scholar 

  • Gabor D (1946) Theory of communication. J IEEE London 93: 429–459

    Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally character-ised neurones in the cat visual cortex. Nature (London) 280: 120–125

    Article  ADS  Google Scholar 

  • Goodwin AW, Henry GH, Bishop PO (1975) Direction selectivity of simple striate cells: Properties and mechanism. J Neurophysiol 38: 1500–1523

    Google Scholar 

  • Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Phys 43: 172–198

    Article  ADS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (London) 160: 106–154

    Google Scholar 

  • Kuffler SW, Nicholls JG (1976) From neuron to brain. Sinauer, Sunderland, Mass

    Google Scholar 

  • Kulikowski JJ, Marielja S, Bishop PO (1982) Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. Biol Cybern 43: 187–198

    Article  MATH  Google Scholar 

  • Lindsay PH, Norman DA (1972) Human information procassing. Academic Press, London New York

    Google Scholar 

  • Maffei L, Fiorentini A (1973) The visual cortex as a spatial frequency analyser. Vision Res 13: 1255–1267

    Article  Google Scholar 

  • Marčelja S (1980) Mathematical description of the response of simple cortical cells. J Opt Soc Am 70: 1297–1300

    Article  ADS  Google Scholar 

  • Morrone MC, Burr DC, Maffei L (1982) Functional implication of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc R Soc London Ser B 216: 335–354

    Article  ADS  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978a) Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol (London) 283: 53–77

    Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978b) Receptive field organization of complex cells in the cat’s striate cortex. J Physiol (London) 283: 79–99

    Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton, New York

    Google Scholar 

  • Pollen DA, Ronner SF (1981) Phase relationships between adjacent simple cells in the visual cortex. Science 212: 1409–1411

    Article  ADS  Google Scholar 

  • Pollen DA, Ronner SF (1983) Visual cortical neurones as localized spatial frequency filters. IEEE Trans SMC 13: 907–915

    Google Scholar 

  • Pollen DA, Lee JR, Taylor JH (1971) How does visual cortex begin the reconstruction of the visual world? Science 173:74– 77

    Article  ADS  Google Scholar 

  • Pollen DA, Foster KH, Gaska JP (1985) Phase-dependent response characteristics of visual cortical neurones. In: Rose D, Dobson V (eds) Models of the visual cortex. J Wiley & Sons, Chichester

    Google Scholar 

  • Sakitt B, Barlow HB (1982) A model for the economical encoding of the visual image in cerebral cortex. Biol Cybern 43: 97–108

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) Mathematical theory of communication. Univ Illinois Press, Urbana

    MATH  Google Scholar 

  • Webster MA, De Valois RL (1985) Relationship between spatial frequency and orientation tuning of striate cortex cells. J Opt Soc Am A2: 1124–1132

    Article  ADS  Google Scholar 

  • Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40: 749–759.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marčelja, S. (1986). Representation of Visual World in the Striate Cortex. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70905-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70905-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70907-4

  • Online ISBN: 978-3-642-70905-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics