Skip to main content

Clostridial Neurotoxins: Handling and Action at the Cellular and Molecular Level

  • Conference paper
Current Topics in Microbiology and Immunology 129

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 129))

Abstract

Tetanus and botulism have fascinated mankind since they were first described by Hippocrates (cited by Major 1965) and Kerner (1817) respectively. Following the ascent of bacteriology at the end of the past century, the flow of research has been uninterrupted, and it may be safely stated that no other group of toxins has aroused as much interest as the clostridial neurotoxins. The pertinent literature presents not only a historical account of their handling by the scientific community, but also a cross-section of the development of science and the time-dependent ways of thinking and experimenting. The progress in understanding started with the detection of the causative bacteria and their toxins at the end of the 19th century, the period dominated by microbiology. A stage of macroscopic physiology ensued, resulting in the assignment of the intoxication to the spinal cord in tetanus and to the peripheral nerve endings in botulism. In parallel, the ascent of immunology led to the development of toxoids and antibodies and paved the way for treatment and prophylaxis of the diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agui T, Syuto B, Oguma K, Iida H, Kubo S (1983) Binding of Clostridium botulinum type-C neurotoxin to rat brain synaptosomes. J Biochem 94:521–527

    PubMed  CAS  Google Scholar 

  • Agui T, Syuto B, Oguma K, Iida H, Kubo S (1985) The structural relation between the antigenic determinants to monoclonal antibodies and binding sites to rat brain synaptosomes and GT Ib ganglioside in Clostridium botulinum type-C neurotoxin. J Biochem 97:213–218

    PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs K, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature (in press)

    Google Scholar 

  • Albus U, Habermann E (1983) Tetanus toxin inhibits the evoked outflow of an inhibitory (GABA) and an excitatory (D-aspartate) amino acid from particulate brain cortex. Toxicon 21:97–110

    PubMed  CAS  Google Scholar 

  • Alouf JE, Fehrenbach FJ, Freer JH, Jeljaszewicz J (1984) Bacterial protein toxins. Academic, London, pp 13–78

    Google Scholar 

  • Alving CR, Iglewski BH, Urban KA, Moses J, Richards RL, Sadoff JC (1980) Binding of diphtheria toxin to phospholipids in liposomes. Proc Natl Acad Sci USA 77:1986–1990

    PubMed  CAS  Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948 a) The action of tetanus toxin on the rabbit’s iris. J Physiol (Lond) 107:45–53

    CAS  Google Scholar 

  • Ambache N, Morgan RS, Wright GP (1948b) The action of tetanus toxin on the acetylcholine and choline esterase content of the rabbit’s iris. Br J Exp Path 29:408–418

    CAS  Google Scholar 

  • An der Lan B, Habig WH, Hardegree MC, Chrambach A (1980) Heterogeneity of I-125-labeled tetanus toxin in isoelectric focusing on Polyacrylamide gel and polyacrylamide-gel electrophoresis. Arch Biochem Biophys 200:206–215

    Google Scholar 

  • Ando S (1983) Gangliosides in the nervous system. Neurochem Int 5:507–537

    PubMed  CAS  Google Scholar 

  • Anonymous (1975) Proceedings of the fourth international conference on tetanus, Dakar 1975 (2 vol). Fondation Merieux, Lyon, France

    Google Scholar 

  • Antony MT, Tonge DA (1980) Effects of denervation and botulinum toxin on muscle sensitivity to acetylcholine and acceptance of foreign innervation in the frog. J Physiol (Lond) 303:23–31

    CAS  Google Scholar 

  • Aquino DA, Bisby MA, Ledeen RW (1985) Retrograde axonal transport of gangliosides and glycoproteins in the motoneurons of rat sciatic nerve. J Neurochem 45:1262–1267

    PubMed  CAS  Google Scholar 

  • Barrett EF, Stevens CF (1972) The kinetics of transmitter release at the frog neuromuscular junction. J Physiol (Lond) 227:691–708

    CAS  Google Scholar 

  • Bergey GK, Nelson PG, Macdonald RL, Habig WH (1981) Tetanus toxin produces blockade of synaptic transmission in mouse spinal cord neurons in culture. Soc Neurosci Abstr 7:439

    Google Scholar 

  • Bergey GK, Macdonald RL, Habig WH, Hardegree MC, Nelson PG (1983) Tetanus toxin: convulsant action on mouse spinal cord neurons in culture. J Neurosci 3:2310–2323

    PubMed  CAS  Google Scholar 

  • Bergey GK, Bigalke H, Nelson PG (1986) Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action. J Neurophysiol (in press)

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Bevan S, Wendon LMB (1984) A study of the action of tetanus toxin at rat soleus neuromuscular junctions. J Physiol (Lond) 348:1–17

    CAS  Google Scholar 

  • Bigalke H, Habermann E (1980) Blockade by tetanus and botulinum A toxin of postganglionic cholinergic nerve endings in the myenteric plexus. Naunyn Schmiedebergs Arch Pharmacol 312:255–263

    PubMed  CAS  Google Scholar 

  • Bigalke H, Habermann E (1981) Botulinum A toxin inhibits the release of noradrenaline, acetylcholine, γ-aminobutyric acid and glycine from rat brain and spinal cord. IRCS Med Sci 9:105–106

    CAS  Google Scholar 

  • Bigalke H, Dimpfel W, Habermann E (1978) Suppression of 3H acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Naunyn Schmiedebergs Arch Pharmacol 303:133–138

    PubMed  CAS  Google Scholar 

  • Bigalke H, Ahnert-Hilger G, Habermann E (1981a) Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naunyn Schmiedebergs Arch Pharmacol 316:143–148

    PubMed  CAS  Google Scholar 

  • Bigalke H, Heller I, Bizzini B, Habermann E (1981b) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied by particulate preparations from rat brain and spinal cord. Naunyn Schmiedebergs Arch Pharmacol 316:244–251

    PubMed  CAS  Google Scholar 

  • Bigalke H, Dreyer F, Bergey GK (1985) Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res 360:318–324

    PubMed  CAS  Google Scholar 

  • Bigalke H, Müller H, Dreyer F (1986) Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase-sensitive structure. Toxicon (in press)

    Google Scholar 

  • Bizzini B (1977) Tetanus structure as a basis for elucidating its immunological and neuropharmacological activities. The specificity and action of animal, bacterial and plant toxins. In: Cuatrecasas P (ed) Receptors and recognition, Series B, vol I. Chapman and Hall, London, pp 177–218

    Google Scholar 

  • Bizzini B (1979) Tetanus toxin. Microbiol Rev 43:224–240

    PubMed  CAS  Google Scholar 

  • Bizzini B (1984 a) Investigation of the mode of action of tetanus toxin with the aid of hybrid molecules consisting in part of tetanus toxin-derived fragments. In: Alouf JE, Fehrenbach FJ, Freer JH, Jeljaszewicz J (eds) Bacterial protein toxins. Academic, London, pp 427–434

    Google Scholar 

  • Bizzini B (1984b) Tetanus. In: Germanier R (ed) Bacterial vaccines. Academic, London, pp 37–68

    Google Scholar 

  • Bizzini B, Stoeckel K, Schwab M (1977) An antigenic polypeptide fragment isolated from tetanus toxin: chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J Neurochem 28:529–542

    PubMed  CAS  Google Scholar 

  • Bizzini B, Akert K, Glicksman M, Grob P (1980 a) Preparation of conjugates using two tetanus toxin-derived fragments: their binding to gangliosides and isolated synaptic membranes and their immunological properties. Toxicon 18:561–572

    PubMed  CAS  Google Scholar 

  • Bizzini B, Grob P, Glicksman MA, Akert K (1980 b) Use of the B-IIb tetanus toxin-derived fragment as a specific neuropharmacological transport agent. Brain Res 193:221–227

    PubMed  CAS  Google Scholar 

  • Bizzini B, Grob P, Akert K (1981) Papain-derived fragment IIC of tetanus toxin: its binding to isolated synaptic membranes and retrograde axonal transport. Brain Res 210:291–299

    PubMed  CAS  Google Scholar 

  • Bóbr J, Guzek JW, Mach Z, Rembriesa R (1959) The behaviour of the endocrine system in the experimental tetanus. 1. Thyroid gland. Arch Immunol Terap Doswin (Pol) 7:171–176

    Google Scholar 

  • Boquet P, Duflot E (1982) Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci USA 79:7614–7618

    PubMed  CAS  Google Scholar 

  • Boquet P, Duflot E, Hauttecoeur B (1984) Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur J Biochem 144:339–344

    PubMed  CAS  Google Scholar 

  • Borochov-Neori H, Yavin E, Montai M (1984) Tetanus toxin forms channels in planar lipid bilayers containing gangliosides. Biophys J 45:83–85

    PubMed  CAS  Google Scholar 

  • Boroff DA, DasGupta BR (1971) Botulinum toxin. In: Kadis S et al. (eds) Microbiol toxins vol II A. Academic, New York, London, p 1–68

    Google Scholar 

  • Boroff DA, del Castillo J, Evoy WH, Steinhardt RA (1974) Observations on the action of type-A botulinum toxin on frog neuromuscular junctions. J Physiol 240:227–253

    PubMed  CAS  Google Scholar 

  • Brenneman DE, Nelson PG (1985) Neuronal development in culture. Role of electrical activity. In: Bottenstein JE, Sato G (eds) Cell culture in the neurosciences. Plenum, New York, pp 289–316

    Google Scholar 

  • Brooks VB (1956) An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J Physiol (Lond) 134:264–277

    CAS  Google Scholar 

  • Bülbring E (1946) Observations on the isolated phrenic nerve diaphragm preparation in the rat. Br J Pharmacol 1:38–61

    Google Scholar 

  • Burgen ASV, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuromuscular junction. J Physiol 109:10–24

    PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA, Grob P, Akert K (1981a) A trans-synaptic autoradiographic study of the pathways controlling the extraocular eye muscles, using 125I-B-IIb tetanus toxin fragment. Ann NY Acad Sci 374:157–170

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Grob P, Akert K, Bizzini B (1981b) Trans-synaptic retrograde labeling in the oculomotor system of the monkey with 125I tetanus toxin BIIb fragment. Neurosci Lett 26:233–238

    PubMed  Google Scholar 

  • Cabiaux V, Lorge P, Vandenbranden M, Falmagne O, Ruysschaert JM (1985) Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem Biophys Res Comm 128:840–849

    PubMed  CAS  Google Scholar 

  • Clowes AW, Cherry RJ, Chapman D (1972) Physical effects of tetanus toxin on model membranes containing ganglioside. J Mol Biol 67:49–57

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Davies J (1980) Tetanus toxin inhibits 3H GABA release from rat substantia nigra slices in vitro. J Physiol (Lond) 308:72P–73P

    Google Scholar 

  • Collingridge GL, Davies J (1982 a) Reversible effects of tetanus toxin on striatal-evoked responses and 3H-γ-aminobutyric acid release in the rat substantia nigra. Br J Pharmacol 76:403–411

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Davies J (1982 b) The in vitro inhibition of GABA release by tetanus toxin. Neuropharmacol 21:851–855

    CAS  Google Scholar 

  • Collingridge GL, Herron CE (1985) Effects of tetanus toxin on GABA synapses in the mammalian central nervous system. In: Nisticô et al. 7th Internatl Conf on Tetanus pp 127–142

    Google Scholar 

  • Collingridge GL, Davies J, James TA, Neal MJ, Tongroach P (1979) Effect of tetanus toxin on uptake and potassium-evoked release of radiolabeled transmitters from the substantia nigra and the striatum of the rat. J Physiol (Lond) 287:32P–33P

    CAS  Google Scholar 

  • Collingridge GL, Collins GGS, Davies J, James TA, Neal MJ, Tongroach P (1980) Effect of tetanus toxin on transmitter release from the substantia nigra and striatum in vitro. J Neurochem 34:540–547

    PubMed  CAS  Google Scholar 

  • Collingridge GL, Thompson PA, Davies J, Mellanby J (1981) In vitro effect of tetanus toxin on GABA release from rat hippocampal slices. J Neurochem 37:1039–1041

    PubMed  CAS  Google Scholar 

  • Colmeus C, Gomez S, Molgo J, Thesleff S (1982) Discrepancies between spontaneous and evoked synaptic potentials at normal, regenerating and botulinum toxin-poisoned mammalian neuromuscular junctions. Proc R Soc Lond [Biol] 215:63–74

    CAS  Google Scholar 

  • Critchley DR, Nelson PG, Habig WH, Fishman PH (1985) Fate of tetanus toxin bound to the surface of primary neurons in culture; evidence for rapid internalization. J Cell Biol 100:1499–1507

    PubMed  CAS  Google Scholar 

  • Cull-Candy SG, Lundh H, Thesleff S (1976) Effect of botulinum toxin on neuromuscular transmission in the rat. J Physiol (Lond) 260:177–203

    CAS  Google Scholar 

  • Curtis DR, DeGroat WC (1968) Tetanus toxin and spinal inhibition. Brain Res 10:208–212

    PubMed  CAS  Google Scholar 

  • Curtis DR, Felix D, Game CJA, McCulloch RM (1973) Tetanus toxin and the synaptic release of GABA. Brain Res 51:358–362

    PubMed  CAS  Google Scholar 

  • DasGupta BR (1981) Structure and structure-function relation of botulinum neurotoxins. In: Lewis GE (ed) Biomedical aspects of botulism. Academic, New York, pp 1–19

    Google Scholar 

  • DasGupta BR, Sugiyama H (1972) Isolation and characterization of a protease from Clostridium botulinum type B. Biochim Biophys Acta 268:719–729

    PubMed  CAS  Google Scholar 

  • DasGupta B, Woody MA (1984) Amino acid composition of Clostridium botulinum B toxin. Toxicon 22:312–315

    PubMed  CAS  Google Scholar 

  • Datyner NB, Gage PW (1980) Phasic secretion of acetylcholine at a mammalian neuromuscular junction. J Physiol (Lond) 303:299–314

    CAS  Google Scholar 

  • Diamond J, Mellanby J (1971) The effect of tetanus toxin in the goldfish. J Physiol (Lond) 215:727–741

    CAS  Google Scholar 

  • Di Mari SJ, Cumming MA, Hash JH, Robinson JP (1982 a) Purification of tetanus toxin and its peptide components by preparative Polyacrylamide gel electrophoresis. Arch Biochem Biophys 214:342–353

    Google Scholar 

  • Di Mari SJ, Hash JH, Robinson JP (1982b) Characterization of tetanus toxins and toxin components by amino terminal analyses. Arch Biochem Biophys 214:354–365

    Google Scholar 

  • Dimpfel W, Habermann E (1977) Binding characteristics of 125I-labeled tetanus toxin to primary tissue cultures from mouse embryonic CNS. J Neurochem 29:1111–1120

    PubMed  CAS  Google Scholar 

  • Dimpfel W, Neale JH, Habermann E (1975) 125I-labeled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS. Naunyn Schmiedebergs Arch Pharmacol 290:329–333

    PubMed  CAS  Google Scholar 

  • Dimpfel W, Huang RTC, Habermann E (1977) Gangliosides in nervous tissue cultures and binding of 125I-labeled tetanus toxin, a neuronal marker. J Neurochem 29:329–334

    PubMed  CAS  Google Scholar 

  • Dolezal V, Vyskocil F, Tucek S (1983) Decrease of the spontaneous non-quantal release of acetylcholine from the phrenic nerve in botulinum-poisoned rat diaphragm. Pflügers Arch 397:319–322

    PubMed  CAS  Google Scholar 

  • Dolly JO, Black J, Williams RS, Melling J (1984a) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307:457–460

    PubMed  CAS  Google Scholar 

  • Dolly JO, Halliwell JV, Black JD, Williams RS, Pelchen-Matthews A, Breeze AL, Mehraban F, Othman IB, Black AR (1984 b) Botulinum neurotoxin and dendrotoxin as probes for studies on neurotransmitter release. J Physiol (Paris) 79:280–303

    CAS  Google Scholar 

  • Donovan JJ, Middlebrook JL (1985) Ion-conducting channels produced by botulinum neurotoxin in planar lipid membranes. Toxicon 23:560

    Google Scholar 

  • Donovan JJ, Simon MI, Montai M (1982) Insertion of diphtheria toxin into and across membranes. Role of phosphoinositide asymmetry. Nature 298:669–672

    PubMed  CAS  Google Scholar 

  • Dreyer F, Schmitt A (1981) Different effects of botulinum A toxin and tetanus toxin on the transmitter-releasing process at the mammalian neuromuscular junction. Neurosci Lett 26:307–311

    PubMed  CAS  Google Scholar 

  • Dreyer F, Schmitt A (1983) Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor end-plates and its dependence on nerve stimulation and temperature. Pflügers Arch 399:228–234

    PubMed  CAS  Google Scholar 

  • Dreyer F, Mallart A, Brigant JL (1983) Botulinum A toxin and tetanus toxin do not affect presynaptic membrane currents in mammalian motor nerve endings. Brain Res 270:373–375

    PubMed  CAS  Google Scholar 

  • Dreyer F, Becker C, Bigalke H, Funk J, Penner R, Rosenberg F, Ziegler M (1984) Action of botulinum A toxin and tetanus toxin on synaptic transmission. J Physiol (Paris) 79:252–258

    CAS  Google Scholar 

  • Duchen LW (1970) Changes in motor innervation and Cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: differences between fast and slow muscles. J Neurol Neurosurg Psychiatry 33:40–54

    PubMed  CAS  Google Scholar 

  • Duchen LW (1971) An electron-microscopic study of the changes induced by botulinum toxin in the motor end-plates of slow and fast skeletal muscle fibres of the mouse. J Neurol Sci 14:47–60

    PubMed  CAS  Google Scholar 

  • Duchen LW, Strich SJ (1968) The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Q J Exp Physiol 53:84–89

    CAS  Google Scholar 

  • Duchen LW, Tonge DA (1973) The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse. J Physiol (Lond) 228:157–172

    CAS  Google Scholar 

  • Duda JJ, Slack JM (1969) Toxin production in Clostridium botulinum as demonstrated by electron microscopy. J Bacteriol 97:900–904

    PubMed  CAS  Google Scholar 

  • Dudel J (1983) Transmitter release triggered by a local depolarization in motor nerve terminals of the frog: role of calcium entry and of depolarization. Neurosci Lett 41:133–138

    PubMed  CAS  Google Scholar 

  • Duff JT, Wright GG, Yarinsky A (1956) Activation of Clostridium botulinum type E by trypsin. J Bacteriol 72:455–460

    CAS  Google Scholar 

  • Dumas M, Schwab ME, Thoenen H (1979 a) Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J Neurobiol 10:179–197

    PubMed  CAS  Google Scholar 

  • Dumas M, Schwab ME, Baumann R, Thoenen H (1979 b) Retrograde transport of tetanus toxin through a chain of 2 neurons. Brain Res 165:354–357

    PubMed  CAS  Google Scholar 

  • Eisenbarth GS, Shimizu K, Bowring MA, Wells S (1982) Expression of receptors for tetanus toxin and monoclonal antibody A2B5 by pancreatic islet cells. Proc Natl Acad Sci USA 79:5066–5070

    PubMed  CAS  Google Scholar 

  • Eklund MW, Poysky FT (1981) Relationship of bacteriophages to the toxigenicity of Clostridium botulinum and closely related organisms. In: Lewis GE (ed) Biomedical aspects of botulism. Academic, New York, pp 93–107

    Google Scholar 

  • Eklund MW, Poysky FT, Boatman ES (1969) Bacteriophages of Clostridium botulinum types A, B, E and F and nontoxigenic strains resembling type E. J Virol 3:270–274

    PubMed  CAS  Google Scholar 

  • Erdmann G, Habermann E (1977) Histoautoradiography of central nervous system in rats with generalized tetanus due to 125I-toxin. Naunyn Schmiedebergs Arch Pharmacol 301:135–138

    PubMed  CAS  Google Scholar 

  • Erdmann G, Hanauske A, Wellhöner HH (1981) Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracisternally injected anti-tetanus toxoid F(ab)2 fragments. Brain Res 211:367–377

    PubMed  CAS  Google Scholar 

  • Fabian R, Coulter JD (1985) Transneuronal transport of lectins. Brain Res 344:41–48

    PubMed  CAS  Google Scholar 

  • Fairweather NF, Lyness VA, Pickard DJ, Allen GF, Thomson RO (1986) Cloning, nucleotide sequencing, and expression of tetanus toxin fragment C in Escherichia coli. J Bacteriol 165:21–27

    PubMed  CAS  Google Scholar 

  • Fedinec AA, Shank RP (1971) Effect of tetanus toxin on the content of glycine, gamma-aminobutyric acid, glutamate, glutamine and aspartate in the rat spinal cord. J Neurochem 18:2229–2234

    PubMed  CAS  Google Scholar 

  • Filiogmeni B, Grasso A (1985) Tetanus toxin affects the K+-stimulated release of catecholamines from nerve growth factor-treated PC 12 cells. Biochem Biophys Res Comm 128:249–256

    Google Scholar 

  • Fillenz M, Gagnon C, Stoeckel K, Thoenen H (1976) Selective uptake and retrograde axonal transport of dopamine-β-hydroxylase antibodies in peripheral adrenergic neurons. Brain Res 114:293–303

    PubMed  CAS  Google Scholar 

  • Finn CW, Silver RP, Habig WH, Hardegree MC, Zon G, Garon CF (1984) The structural gene of tetanus neurotoxin is on a plasmid. Science 224:881–884

    PubMed  CAS  Google Scholar 

  • Focá A, Rotiroti D, Mastroeni P, Nistico G (1984) Effects of tetanus toxin after intracerebral microinjection are antagonised by drugs enhancing GABAergic transmission in adult fowls. Neuropharmacology 23:155–158

    PubMed  Google Scholar 

  • Gähwiler BH (1984) Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 40:235–244

    PubMed  Google Scholar 

  • Gammon CM, Ledeen RW (1985) Evidence for the presence of a ganglioside transfer protein in brain. J Neurochem 44:979–984

    PubMed  CAS  Google Scholar 

  • Goldberg RL, Costa T, Habig WH, Kohn LD, Hardegree MC (1981) Characterization of fragment C and tetanus toxin binding to rat brain membranes. Mol Pharmacol 20:565–570

    PubMed  CAS  Google Scholar 

  • Gonatas NK, Harper C, Mizutani T, Gonatas JO (1979) Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J Histochem Cytochem 27:728–734

    PubMed  CAS  Google Scholar 

  • Goretzki K, Habermann E (1985) Enzymatic hydrolysis of tetanus toxin by intrinsic and extrinsic proteases. Characterization of the fragments by monoclonal antibodies. Med Microbiol Immunol 174:139–150

    PubMed  CAS  Google Scholar 

  • Gundersen CB (1980) The effects of botulinum toxin on the synthesis, storage and release of acetylcholine. Progr Neurobiol 14:99–119

    CAS  Google Scholar 

  • Gundersen CB Jr, Howard BD (1978) The effects of botulinum toxin on acetylcholine metabolism in mouse brain slices and synaptosomes. J Neurochem 31:1005–1013

    PubMed  CAS  Google Scholar 

  • Gundersen CB, Jenden DJ (1983) Spontaneous output of acetylcholine from rat diaphragm preparations declines after treatment with botulinum toxin. J Pharmacol Exp Ther 224:265–268

    PubMed  CAS  Google Scholar 

  • Gundersen CB, Katz B, Miledi R (1982) The antagonism between botulinum toxin and calcium in motor nerve terminals. Proc R Soc Lond B 216:369–376

    PubMed  CAS  Google Scholar 

  • Habermann E (1970) Pharmakokinetische Besonderheiten des Tetanustoxins und ihre Beziehung zur Pathogenese des lokalen bzw. generalisierten Tetanus. Naunyn Schmiedebergs Arch Pharmacol 267:1–19

    PubMed  CAS  Google Scholar 

  • Habermann E (1972) Distribution of 125I-tetanus toxin and 125I-toxoid in rats with local tetanus, as influenced by antitoxin. Naunyn Schmiedebergs Arch Pharmacol 272:75–88

    PubMed  CAS  Google Scholar 

  • Habermann E (1973 a) Discrimination between binding to CNS, toxicity and immunoreactivity of derivatives of tetanus toxin. Med Microbiol Immunol 159:89–100

    PubMed  CAS  Google Scholar 

  • Habermann E (1973 b) Interaction of labelled tetanus toxin and toxoid with substructures of rat brain and spinal cord in vitro. Naunyn Schmiedebergs Arch Pharmacol 276:341–359

    PubMed  CAS  Google Scholar 

  • Habermann E (1974) 125I-labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptosomes and ascent to the spinal cord. Naunyn Schmiedebergs Arch Pharmacol 281:47–56

    PubMed  CAS  Google Scholar 

  • Habermann E (1976) Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors. Naunyn Schmiedebergs Arch Pharmacol 293:1–9

    PubMed  CAS  Google Scholar 

  • Habermann E (1977) Transmembranal and intracellular transport of pharmacologically active proteins and polypeptides. Naunyn Schmiedebergs Arch Pharmacol 297:11–14

    CAS  Google Scholar 

  • Habermann E (1978) Tetanus. In: Vinken PJ, Bruyn GE (eds) Handbook of clinical neurology, vol 33. I. Infections of the nervous system. North-Holland, Amsterdam, pp 491–547

    Google Scholar 

  • Habermann E (1981a) Botulinum A and tetanus toxin — similar actions on transmitter systems in vitro. In: Lewis GE (ed) Biomedical aspects of botulinum. Academic, New York, pp 129–141

    Google Scholar 

  • Habermann E (1981 b) Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentration enhance noradrenaline outflow from particulate brain cortex in batch. Naunyn Schmiedebergs Arch Pharmacol 318: 105–111

    PubMed  CAS  Google Scholar 

  • Habermann E, Albus U (1986) Interaction between tetanus toxin and rabbit kidney: A comparison with rat brain preparations. J Neurochem 46:1219–1226

    PubMed  CAS  Google Scholar 

  • Habermann E, Breithaupt H (1978) The crotoxin complex — an example of biochemical and pharmacological protein complementation. Toxicon 16:19–30

    PubMed  CAS  Google Scholar 

  • Habermann E, Dimpfel W (1973) Distribution of 125I-tetanus toxin and 125I-toxoid in rats with generalized tetanus, as influenced by antitoxin. Naunyn Schmiedebergs Arch Pharmacol 176:327–340

    Google Scholar 

  • Habermann E, Erdmann G (1978) Pharmacokinetic and histoautoradiographic evidence for the intra-axonal movement of toxin in the pathogenesis of tetanus. Toxicon 16:611–623

    PubMed  CAS  Google Scholar 

  • Habermann E, Goretzki K (1985) Monoclonal antibodies against tetanus toxin and toxoid. In: Macario AJL, Conway de Macario E (eds) Monoclonal antibodies against bacteria, vol I. Academic, New York, pp 191–204

    Google Scholar 

  • Habermann E, Heller I (1975) Direct evidence for the specific fixation of Cl. botulinum A neurotoxin to brain matter. Naunyn Schmiedebergs Arch Pharmacol 287:97–106

    PubMed  CAS  Google Scholar 

  • Habermann E, Tayot JL (1985) Interaction of solid-phase gangliosides with tetanus toxin and tetanus toxoid. Toxicon 23:913–920

    PubMed  CAS  Google Scholar 

  • Habermann E, Wellhöner HH, Räker KO (1977) Metabolic fate of 125I-tetanus toxin in the spinal cord of rats and cats with early local tetanus. Naunyn Schmiedebergs Arch Pharmacol 299:187–196

    PubMed  CAS  Google Scholar 

  • Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedebergs Arch Pharmacol 311:33–40

    PubMed  CAS  Google Scholar 

  • Habermann E, Bigalke H, Heller I (1981) Inhibition of synaptosomal choline uptake by tetanus and botulinum A toxin. Partial dissociation of fixation and effect of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 316:135–142

    PubMed  CAS  Google Scholar 

  • Habermann E, Goretzki K, Albus U (1985) Tetanus toxin: Its interaction with tissue constituents and monoclonal antibodies. In: Nisticó et al. 7th Internat Conf on Tetanus pp 179–193

    Google Scholar 

  • Habig WH, Grollman EF, Ledley FD, Meldolesi MF, Aloj SM, Hardegree C, Kohn LD (1978) Tetanus toxin interactions with the thyroid: decreased toxin binding to membranes from a thyroid tumor with thyrotropin receptor defect and in vivo stimulation of thyroid function. Endocrinology 102:844–851

    PubMed  CAS  Google Scholar 

  • Habig WH, Kenimer JG, Hardegree MC (1983) Retrograde axonal transport of tetanus toxin: toxin-mediated antibody transport. In: Lin TY (ed) Frontiers in biochemical studies of proteins and membranes. Elsevier, New York, pp 463–473

    Google Scholar 

  • Habig WH, Bigalke H, Bergey GK, Neale EA, Nelson PG (1986) Tetanus toxin in dissociated spinal cord cultures: long-term characterization of form and action. J Neurochem (in press)

    Google Scholar 

  • Hagenah R, Benecke R, Wiegand H (1977) Effects of type A botulinum toxin on the cholinergic transmission at spinal Renshaw cells and on the inhibitory action at Ia interneurones. Naunyn Schmiedebergs Arch Pharmacol 299:267–272

    PubMed  CAS  Google Scholar 

  • Hara T, Matsuda M, Yoneda M (1977) Isolation and some properties of nontoxigenic derivatives of a strain of Clostridium tetani. Biken J 20:105–115

    PubMed  CAS  Google Scholar 

  • Harper CG, Gonatas JO, Stieber A, Gonatas NK (1980) In vivo uptake of wheat germ agglutinin- horseradish peroxidase conjugates into neuronal GERL and lysosomes. Brain Res 188:465–472

    PubMed  CAS  Google Scholar 

  • Harris AJ, Miledi R (1971) The effect of type-D botulinum toxin on frog neuromuscular junctions. J Physiol (Lond) 217:497–515

    CAS  Google Scholar 

  • Haynes BF, Shimizu K, Eisenbarth GS (1983) Identification of human and rodent thymic epithelium using tetanus toxin and monoclonal antibody A2B5. J Clin Invest 71:9–14

    PubMed  CAS  Google Scholar 

  • Helting TB, Habig WH (1984) Structural relationship, toxicity, binding activity and immunogenicity of tetanus toxin fragments. In: Alouf JE, Fehrenbach FJ, Freer JH, Jeljaszewicz J (eds) Bacterial protein toxins. Academic, London, pp 413–420

    Google Scholar 

  • Helting TB, Zwisler O (1974) Enzymatic breakdown of tetanus toxin. Biochem Biophys Res Commun 57:1263–1270

    PubMed  CAS  Google Scholar 

  • Helting TB, Zwisler O (1977) Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. J Biol Chem 252:187–193

    PubMed  CAS  Google Scholar 

  • Helting TB, Ronneberger HJ, Vollerthun R, Neubauer V (1978) Toxicity of papain-digested tetanus toxin, pathological effect of fragment B in the absence of spastic paralysis. J Biol Chem 253:125–129

    PubMed  CAS  Google Scholar 

  • Helting TB, Parschat S, Engelhard H (1979) Structure of tetanus toxin — demonstration and separation of a specific enzyme converting intracellular tetanus toxin to the extracellular form. J Biol Chem 254:10728–10733

    PubMed  CAS  Google Scholar 

  • Heyer EJ, Nowak LM, Macdonald RL (1981) Bicuculline: a convulsant with synaptic and nonsyn-aptic actions. Neurology (NY) 31:1381–1390

    CAS  Google Scholar 

  • Higashida H, Sugimoto N, Ozutsumi K, Miki N, Matsuda M (1983) Tetanus toxin: a rapid and selective blockade of calcium, but not sodium, component of action potentials in cultured neuroblastoma NIE-115 cells. Brain Res 279:363–368

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Kitamura M (1975) Localization of radioactive 125I-labelled botulinum toxin at the neuromuscular junction of mouse diaphragm. Naunyn Schmiedebergs Arch Pharmacol 287:107–110

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Kitamura M (1979) Binding of Clostridium botulinum neurotoxin to the presynaptic membrane in the central nervous system. J Cell Biol 81:43–49

    PubMed  CAS  Google Scholar 

  • Hoch DH, Romero-Mira M, Ehrlich BE, Finkelstein A, Das Gupta BR, Simpson LL (1985) Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci USA 82:1692–1696

    PubMed  CAS  Google Scholar 

  • Holmgren J, Elwing H, Fredman P, Svennerholm L (1980) Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus toxin receptor. Eur J Biochem 106:371–379

    PubMed  CAS  Google Scholar 

  • Iida H, Oguma K (1981) Toxin production and phage in Clostridium botulinum types C and D. In: Lewis GE (ed) Biomedical aspects of botulism. Academic, New York, pp 109–120

    Google Scholar 

  • Inoue K, Iida H (1968) Bacteriophages of Clostridium botulinum. J Virol 2:537–540

    PubMed  CAS  Google Scholar 

  • James TA, Collingridge GL (1979) Rapid behavioral and biochemical effects of tetanus toxin microinjected into the substantia nigra: a dual role for GABA? Neurosci Lett 11:205–208

    PubMed  CAS  Google Scholar 

  • Janicki P, Habermann E (1983) Tetanus and botulinum toxins inhibit, and black widow spider venom stimulates the release of methionine-enkephalin-like material in vitro. J Neurochem 41:395–402

    PubMed  CAS  Google Scholar 

  • Johnston GAR, Groat WC de, Curtis DR (1969) Tetanus toxin and amino acid levels in cat spinal cord. J Neurochem 16:797–800

    PubMed  CAS  Google Scholar 

  • Kaeser HE, Saner A (1969) Tetanus toxin, a neuromuscular blocking agent. Nature 223:842

    PubMed  CAS  Google Scholar 

  • Kao J, Drachman DB, Price DL (1976) Botulinum toxin: mechanism of presynaptic blockade. Science 193:1256–1258

    PubMed  CAS  Google Scholar 

  • Kasai N, Yu RK (1983) The monoclonal antibody A2B5 is specific to gangliosides GQ1c. Brain Res 277:155–159

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond B 196:59–72

    PubMed  CAS  Google Scholar 

  • Kemplay S, Cavanagh JB (1983) Effects of acrylamide and botulinum toxin on horseradish peroxidase labelling of trigeminal motor neurons in the rat. J Anat 137:477–482

    PubMed  CAS  Google Scholar 

  • Kerner J (1817) Vergiftung durch verdorbene Würste. In: Tübinger Blätter für Naturwissenschaften und Arzneikunde, Band 3, Heft 1

    Google Scholar 

  • Kim YI, Lomo T, Lupa MT, Thesleff S (1984) Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol (Lond) 356:587–599

    CAS  Google Scholar 

  • Kitamura M (1976) Binding of botulinum neurotoxin to the synaptosome fraction of rat brain. Naunyn Schmiedebergs Arch Pharmacol 295:171–175

    PubMed  CAS  Google Scholar 

  • Kitamura M, Iwamori M, Nagai Y (1980) Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta 628:328–335

    PubMed  CAS  Google Scholar 

  • Knight DE, Tonge DA, Baker PF (1985) Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317:719–721

    PubMed  CAS  Google Scholar 

  • Kozaki S (1979) Interaction of botulinum type A, B and E derivative toxins with synaptosomes of rat brain. Naunyn Schmiedebergs Arch Pharmacol 308:67–70

    PubMed  CAS  Google Scholar 

  • Kozaki S, Sakaguchi G (1982) Binding to mouse brain synaptosomes of Clostridium botulinum type E derivative toxin before and after tryptic activation. Toxicon 20:841–846

    CAS  Google Scholar 

  • Kozaki S, Miyazaki S, Sakaguchi G (1977) Development of antitoxin with each of two complementary fragments of Clostridium botulinum type B derivative toxin. Infect Immun 18:761–766

    PubMed  CAS  Google Scholar 

  • Kozaki S, Miyazaki S, Sakaguchi G (1978) Structure of Clostridium botulinum type B derivative toxin: inhibition with a fragment of toxin from binding to synaptosomal fraction. Jpn J Med Sci Biol 31:163–166

    PubMed  CAS  Google Scholar 

  • Kozaki S, Togashi S, Sakaguchi G (1981) Separation of Clostridium botulinum type A derivative toxin into two fragments. Jpn J Med Sci Biol 34:61–68

    PubMed  CAS  Google Scholar 

  • Kriebel ME, Llados F, Matteson DR (1976) Spontaneous subminiature end-plate potentials in mouse diaphragm muscle: evidence for synchronous release. J Physiol (Lond) 262:553–581

    CAS  Google Scholar 

  • Kristensson K, Olsson T (1978) Uptake and retrograde axonal transport of horseradish peroxidase in botulinum-intoxicated mice. Brain Res 155:118–123

    PubMed  CAS  Google Scholar 

  • Kryzhanovsky GN (1966) Tetanus. State Publishing House “Medicine” Moscow Kryzhanovsky GN (1973) The mechanism of action of tetanus toxin: effect on synaptic processes and some particular features of toxin binding by the nervous tissue. Naunyn Schmiedebergs Arch Pharmacol 276:247–270

    Google Scholar 

  • Kryzhanovsky GN (1975 a) Present data on the pathogenesis of tetanus. Prog Drug Res 19:301–313

    PubMed  CAS  Google Scholar 

  • Kryzhanovsky GN (1975b) Tetanus: general and pathophysiological aspects. Achievements, failures, perspectives of elaboration of the problem. Prog Drug Res 19:314–322

    PubMed  CAS  Google Scholar 

  • Kryzhanovsky GN (1981) Pathophysiology. In: Veronesi R (ed) Tetanus. Important new concepts. Excerpta Medica, Amsterdam, pp 109–182

    Google Scholar 

  • Kryzhanovsky GN, Rodina VI, Glebov RN, Bazyan AS (1980) Effect of tetanus toxin on noradrenaline liberation from rat brain synaptosomes. Bull Exp Biol Med (Transl) 89:115–118

    Google Scholar 

  • Laird WJ, Aaronson W, Silver RP, Habig WH, Hardegree MC (1980) Plasmid-associated toxigenicity in Clostridium tetani. J Infect Dis 142:623

    PubMed  CAS  Google Scholar 

  • Laird WJ, Aaronson W, Habig WH, Hardegree MC, Silver RP (1981) 6th Internatl Conf on Tetanus. Fondation Merieux, Lyon, pp 9–19

    Google Scholar 

  • Laurence DR, Webster RA (1963) Pathologic physiology, pharmacology and therapeutics of tetanus. Clin Pharmacol Ther 4:36–73

    Google Scholar 

  • Lazarovici P, Yavin E (1985 a) Tetanus toxin interaction with human erythrocytes. I. Properties of polysialoganglioside association with the cell surface. Biochim Biophys Acta 812:523–531

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Yavin E (1985b) Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation. Biochim Biophys Acta 812:532–542

    PubMed  CAS  Google Scholar 

  • Lazarovici P, Tayot JL, Yavin E (1984) Affinity chromatographic purification and characterization of two iodinated tetanus toxin fractions exhibiting different binding properties. Toxicon 22:401–413

    PubMed  CAS  Google Scholar 

  • Ledeen R (1985) Gangliosides of the neuron. Trends Neurosci 8:169–174

    CAS  Google Scholar 

  • Ledley FD, Lee G, Kohn LD, Habig WH, Hardegree MC (1977) Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance. J Biol Chem 252:4049–4055

    PubMed  CAS  Google Scholar 

  • Lee PM, Grant CWM (1980) Ganglioside head group disorder as a sequel to lectin binding. Biochem Biophys Res Comm 95:1299–1305

    PubMed  CAS  Google Scholar 

  • Lee G, Grollmann EF, Dyer S, Beguinod F, Kohn D, Habig WH, Hardegree MC (1979) Tetanus toxin and thyrotropin interactions with rat-brain membrane preparations. J Biol Chem 254:3826–3832

    PubMed  CAS  Google Scholar 

  • Lewis GE (ed) (1981) Biomedical aspects of botulism. Academic, New York

    Google Scholar 

  • Lietzke R, Unsicker K (1983) Tetanus toxin binding to different morphological phenotypes of cultured rat and bovine adrenal medullary cells. Neurosci Lett 38:233–238

    PubMed  CAS  Google Scholar 

  • Llados F, Matteson DR, Kriebel ME (1980) β-Bungarotoxin preferentially blocks one class of miniature end-plate potentials. Brain Res 192:598–602

    PubMed  CAS  Google Scholar 

  • Lundh H (1978) Effects of 4-aminopyridine on neuromuscular transmission. Brain Res 153: 307–318

    PubMed  CAS  Google Scholar 

  • Lundh H (1983) Antagonism of botulinum toxin paralysis by low temperature. Muscle Nerve 6:56–60

    PubMed  CAS  Google Scholar 

  • Lundh H, Leander S, Thesleff S (1977) Antagonism of the paralysis produced by botulinum toxin in the rat. J Neurol Sci 32:29–43

    PubMed  CAS  Google Scholar 

  • Macdonald RL, Barker JL (1978) Specific antagonism of GABA-mediated postsynaptic inhibition in cultured spinal cord neurons: a common mode of convulsant action. Neurology (NY) 28:325–330

    CAS  Google Scholar 

  • Major RH (1965) Classic descriptions of disease. Thomas, Springfield

    Google Scholar 

  • Marie A (1898) Recherches sur les proprietes antitetaniques des centres nerveux de l’animal sain. Ann Inst Pasteur 12:91–95

    Google Scholar 

  • Matsuda M, Yoneda M (1974) Dissociation of tetanus neurotoxin into two polypeptide fragments. Biochem Biophys Res Commun 57:1257–1262

    PubMed  CAS  Google Scholar 

  • Matsuda M, Yoneda M (1975) Isolation and purification of two antigenically active, “complementary” polypeptide fragments of tetanus neurotoxin. Infect Immun 12:1147–1153

    PubMed  CAS  Google Scholar 

  • Matsuda M, Yoneda M (1976) Reconstitution of tetanus neurotoxin from two antigenically active polypeptide fragments. Biochem Biophys Res Commun 68:668–674

    PubMed  CAS  Google Scholar 

  • Matsuda M, Yoneda M (1977) Antigenic substructure of tetanus neurotoxin. Biochem Biophys Res Commun 77:268–274

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (1979) Use of the neurotoxic agents kainic acid and tetanus toxin in the extrapyramidal system. Adv Cytopharm 3:437–446

    CAS  Google Scholar 

  • McGeer PL, McGeer EG, Campbell JJ (1980) Rotatory effects of intra-cerebral tetanus toxin injections. Exp Neurol 67:363–367

    PubMed  CAS  Google Scholar 

  • Meldolesi MF, Fishman PH, Aloj SM, Ledley FD, Lee G, Bradley RM, Brady RO, Kohn LD (1977) Separation of the glycoprotein and ganglioside components of thyrotropin receptor activity in plasma membranes. Biochem Biophys Res Commun 75:581–588

    PubMed  CAS  Google Scholar 

  • Mellanby J (1984) Comparative activities of tetanus and botulinum toxins. Neuroscience 11:29–34

    PubMed  CAS  Google Scholar 

  • Mellanby J, Green J (1981) Commentary. How does tetanus toxin act? Neuroscience 6:281–300

    PubMed  CAS  Google Scholar 

  • Mellanby J, Pope D (1976) The relationship between the action of tetanus toxin and its binding by membranes and gangliosides. In: Porcellati G, Ceccarelli B, Tettamanti G (eds) Ganglioside Function: Biochemical and Pharmacological Implications. Plenum Press, New York, pp 215–229

    Google Scholar 

  • Mellanby J, Thompson PA (1972) The effect of tetanus toxin at the neuromuscular junction in the goldfish. J Physiol (Lond) 224:407–419

    CAS  Google Scholar 

  • Mellanby J, Thompson PA (1981) The interaction of tetanus toxin and lanthanum at the neuromuscular junction in the goldfish. Toxicon 19:547–554

    PubMed  CAS  Google Scholar 

  • Mellanby J, Whittaker VP (1968) The fixation of tetanus toxin by synaptic membranes. J Neurochem 15:205–208

    PubMed  CAS  Google Scholar 

  • Meyer H, Ransom F (1903) Untersuchungen über den Tetanus. Arch Exp Path Pharmakol 49:369–416

    Google Scholar 

  • Mirsky R, Wendon LMB, Black P, Stolkin C, Bray D (1978) Tetanus toxin: a cell surface marker for neurons in culture. Brain Res 148:251–259

    PubMed  CAS  Google Scholar 

  • Molgo J, Thesleff S (1982) 4-Aminoquinoline-induced ‘giant’ miniature end-plate potentials at mammalian neuromuscular junctions. Proc R Soc Lond B 214:229–247

    PubMed  CAS  Google Scholar 

  • Molgo J, Thesleff S (1984) Studies on the mode of action of botulinum toxin type A at the frog neuromuscular junction. Brain Res 297:309–316

    PubMed  CAS  Google Scholar 

  • Montesano R, Roth J, Robert A, Orci L (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653

    PubMed  CAS  Google Scholar 

  • Morris NP, Consiglio E, Kohn L, Habig D, Hardegree WH, Helting TB (1980) Interaction of fragment-B and fragment-C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem 255:6071–6076

    PubMed  CAS  Google Scholar 

  • Moss J, Fishman PH, Watkins PA (1980) In vitro degradation of 125I-choleragen by normal human fibroblasts. In: Proc 15th Joint Conference on Cholera. US Dept HEW, NIH Publ No 80–2003, pp 279–288

    Google Scholar 

  • Mullin BR, Fishman RH, Lee G, Aloj SM, Ledley FD, Winand RJ, Kohn LD, Brady RO (1976) Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc Natl Acad Sci USA 73:842–846

    PubMed  CAS  Google Scholar 

  • Murayama S, Syuto B, Oguma K, Iida H, Kubo S (1984) Comparison of Clostridium botulinum toxin types D and C1 in molecular property, antigenicity and binding ability to rat-brain synaptosomes. Eur J Biochem 142:487–492

    PubMed  CAS  Google Scholar 

  • Nagata I, Keilhauer G, Schachner M (1986) Neuronal influence on antigenic marker profile, cell shape and proliferation of cultured astrocytes obtained by microdissection of distinct layers from the early postnatal mouse cerebellum. Develop Brain Res 24:217–232

    Google Scholar 

  • Nässl DR (1981) Transneuronal labeling with horseradish peroxidase in the visual system of the house fly. Brain Res 206:431–438

    Google Scholar 

  • Neubauer V, Helting TB (1979) Structure of tetanus toxin. N-terminal amino acid analysis of the two molecular forms of tetanus toxin and its composite chains. Biochem Biophys Res Commun 86:635–642

    PubMed  CAS  Google Scholar 

  • Neubauer V, Helting TB (1981) Structure of tetanus toxin. The arrangement of papain digestion products within the heavy chain-light chain framework of extracellular toxin. Biochim Biophys Acta 668:141–148

    PubMed  CAS  Google Scholar 

  • Neville DM, Chang TM (1978) Receptor-mediated protein transport into cells. Entry mechanisms for toxins, hormones, antibodies, viruses, lysosomal hydrolyses, asialoglycoproteins, and carrier proteins. Curr Top Membrane Transp 10:65–150

    CAS  Google Scholar 

  • Nishida S, Yamagishi T, Tamai K, Sanada I, Takahashi K (1969) Effects of heat selection on toxigenicity, cultural properties and antigenic structures of Clostridia. J Infect Dis 120:507–516

    PubMed  CAS  Google Scholar 

  • Nisticó G, Mastroeni P, Pitzurra M (eds) (1985) Seventh International Conference on Tetanus, Gangemi Publ., Rome

    Google Scholar 

  • Ohishi I (1983 a) Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injections of the two toxin components. Infect Immun 40:336–339

    PubMed  CAS  Google Scholar 

  • Ohishi I (1983b) Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of non-linked protein components. Infect Immun 40:691–695

    PubMed  CAS  Google Scholar 

  • Ohishi I, Sakaguchi G (1977) Activation of botulinum toxins in the absence of nicking. Infect Immun 17:402–407

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980 a) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980b) Vascular permeability activity of botulinum C2 toxin elicited by cooperation of two dissimilar protein components. Infect Immun 31:890–895

    Google Scholar 

  • Ohishi I, Miyake M, Ogura H, Nakamura S (1984) Cytopathic effect of botulinum C2 toxin on tissue culture cells. FEMS Microbiol Lett 23:281–284

    CAS  Google Scholar 

  • Oilman M, Galla HJ (1985) Ganglioside headgroups decrease lipid order in reconstituted phosphatidylcholine liposomes. FEBS Lett 179:173–176

    Google Scholar 

  • Osborne RH, Bradford HF (1973) Tetanus toxin inhibits amino acid release from nerve endings in vitro. Nature (New Biol) 244:157–158

    CAS  Google Scholar 

  • Pearce BR, Gard AL, Dutton GR (1983) Tetanus toxin inhibition of K+-stimulated 3H-GABA release from developing cell cultures of rat cerebellum. J Neurochem 40:887–890

    PubMed  CAS  Google Scholar 

  • Polak RL, Sellin LC, Thesleff S (1981) Acetylcholine content and release in denervated or botulinum-poisoned rat skeletal muscle. J Physiol (Lond) 319:253–259

    CAS  Google Scholar 

  • Prescott LM, Altenbern RA (1967 a) Detection of bacteriophages from two strains of Clostridium tetani. J Virol 1:1085–1086

    PubMed  CAS  Google Scholar 

  • Prescott LM, Altenbern RA (1967b) Inducible lysis in Clostridium tetani. J Bacteriol 93:1220–1225

    PubMed  CAS  Google Scholar 

  • Prévot AR (1955) Biologie des maladies dues aux anérobies. Collection de l’Institut Pasteur. Edit. Medical Flammarion, Paris

    Google Scholar 

  • Price DL, Griffin JW (1977) Tetanus toxin: retrograde axonal transport of systemically administered toxin. Neuro sei Lett 4:61–65

    CAS  Google Scholar 

  • Price DL, Griffin JW, Peck K (1977) Tetanus toxin: evidence for binding at synaptic nerve endings. Brain Res 121:379–384

    PubMed  CAS  Google Scholar 

  • Proia RL, Hart DA, Holmes RK, Holmes KV, Eideis L (1979) Immunoprecipitation and partial characterization of diphtheria toxin-binding glycoproteins from surface of guinea-pig cells. Proc Natl Acad Sci USA 76:685–689

    PubMed  CAS  Google Scholar 

  • Pumplin DW, del Castillo J (1975) Release of packets of acetylcholine and synaptic vesicles elicited by brown widow spider venom in frog motor nerve endings poisoned by botulinum toxin. Life Sci 17:137–142

    PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble MC (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    PubMed  CAS  Google Scholar 

  • Raju TR, Dahl D (1982) Immunofluorescence staining of cultured neurones: a comparative study using tetanus toxin and neurofilament antisera. Brain Res 248:196–200

    PubMed  CAS  Google Scholar 

  • Ramos S, Grollmann EF, Lazo PS, Dyer SHA, Habig WH, Hardegree MC, Kaback HR, Kohn LD (1979) Effect of tetanus toxin on the accumulation of the permeant lipophilic cation tetraphenylphosphonium by guinea pig brain synaptosomes. Proc Natl Acad Sci USA 76:4783–4787

    PubMed  CAS  Google Scholar 

  • Rey M, Diop-Mar I, Robert D (1981) Treatment of tetanus. In: Veronesi R (ed) Tetanus: important new concepts. Excerpta Medica, Amsterdam, pp 207–237

    Google Scholar 

  • Roa M, Boquet P (1985) Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis. J Biol Chem 260:6827–6835

    PubMed  CAS  Google Scholar 

  • Robinson JP, Hash JH (1982) A review of the molecular structure of tetanus toxin. Mol Cell Biochem 48:33–45

    PubMed  CAS  Google Scholar 

  • Rogers TB, Snyder SH (1981) High-affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem 256:2402–2407

    PubMed  CAS  Google Scholar 

  • Sakaguchi G (1983) Clostridium botulinum toxins. Pharmacol Ther 19:165–194

    CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta BR (1985 a) Partial amino acid sequences of the heavy and light chains of botulinum neurotoxin type E. Biochem Biophys Res Comm 127:768–772

    PubMed  CAS  Google Scholar 

  • Sathyamoorthy V, DasGupta BR (1985 b) Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B and E. J Biol Chem 260:10461–10466

    PubMed  CAS  Google Scholar 

  • Schmidt JJ, Sathyamoorthy V, DasGupta BR (1984) Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type A. Biochem Biophys Res Comm 119:900–905

    PubMed  CAS  Google Scholar 

  • Schmidt JJ, Sathyamoorthy V, DasGupta BR (1985) Partial amino acid sequences of botulinum neurotoxins types B and E. Arch Biochem 238:544–548

    CAS  Google Scholar 

  • Schmitt A, Dreyer F, John C (1981) At least three sequential steps are involved in the tetanus-induced block of neuromuscular transmission. Naunyn Schmiedebergs Arch Pharmacol 317:326–330

    PubMed  CAS  Google Scholar 

  • Schnitzer J, Schachner M (1981a) Expression of Thy-1, H-2 and NS-4cell surface antigens and tetanus toxin receptors in early postnatal and adult mouse cerebellum. J Neuroimmunol 1:429–456

    PubMed  CAS  Google Scholar 

  • Schnitzer J, Schachner M (1981b) Developmental expression of cell type-specific markers in mouse cerebellar cortical cells in vitro. J Neuroimmunol 1:471–487

    PubMed  CAS  Google Scholar 

  • Schnitzer J, Kim U, Schachner M (1984) Some immature tetanus toxin-positive cells share antigenic properties with subclasses of glial cells. An immunofluorescence study in developing nervous system of the mouse using a new monoclonal antibody S1. Devel Brain Res 16:203–217

    Google Scholar 

  • Schwab ME, Thoenen H (1976) Electron-microscopic evidence for a trans-synaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res 105:213–227

    PubMed  CAS  Google Scholar 

  • Schwab ME, Thoenen H (1977) Retrograde axonal and trans-synaptic transport of macromolecules: physiological and pathophysiological importance. Agents Actions 7:361–368

    PubMed  CAS  Google Scholar 

  • Schwab ME, Thoenen H (1978) Selective-binding, uptake and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron-microscopic study using colloidal gold as a tracer. J Cell Biol 77:1–13

    PubMed  CAS  Google Scholar 

  • Schwab M, Agid Y, Glowinski J, Thoenen H (1977) Retrograde axonal transport of 125I-tetanus toxin as a tool for tracing fiber connections in the central nervous system. Connections of the rostral part of the rat neostriatum. Brain Res 126:211–224

    PubMed  CAS  Google Scholar 

  • Schwab ME, Suda K, Thoenen H (1979) Selective retrograde trans-synaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol 82:798–810

    PubMed  CAS  Google Scholar 

  • Schwartz JH (1979) Axonal transport: components, mechanisms, and specificity. Ann Rev Neurosci 2:467–504

    PubMed  CAS  Google Scholar 

  • Sellin LC, Thesleff S (1981) Pre- and post-synaptic actions of botulinum toxin at the rat neuromuscular junction. J Physiol (Lond) 317:487–495

    CAS  Google Scholar 

  • Sellin LC, Kauffman JA, DasGupta BR (1983 a) Comparison of the effects of botulinum neurotoxin types A and E at the rat neuromuscular junction. Med Biol 61:120–125

    PubMed  CAS  Google Scholar 

  • Sellin LC, Thesleff S, DasGupta BR (1983 b) Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta Physiol Scand 119:127–133

    PubMed  CAS  Google Scholar 

  • Sellin LC, Kauffman JA, Way JF, Siegel LS (1983 c) Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Soc Neurosci Abstr 9

    Google Scholar 

  • Semba T, Kano M (1969) Glycine in the spinal cord of cats with local tetanus rigidity. Science 164:571–572

    PubMed  CAS  Google Scholar 

  • Sherrington CS (1905) On reciprocal innervation of antagonistic muscles — eighth note. Proc R Soc Lond (Biol) 76:269–297

    Google Scholar 

  • Shone CC, Hambleton P, Melling J (1985) Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur J Biochem 151:75–82

    PubMed  CAS  Google Scholar 

  • Simpson LL (1974) Studies on the binding of botulinum toxins type A to the rat phrenic nerve- hemidiaphragm preparation. Neuropharmacol 13:683–691

    CAS  Google Scholar 

  • Simpson LL (1978) Pharmacological studies on the subcellular site of action of botulinum toxin type A. J Pharmacol Exp Ther 206:661–669

    PubMed  CAS  Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212:16–21

    PubMed  CAS  Google Scholar 

  • Simpson LL (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188

    PubMed  CAS  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum Cl and C2 toxins. J Pharmacol Exp Ther 223:695–701

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984 a) Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin. J Pharmacol Exp Ther 228:600–605

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984 b) Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res 305:177–180

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984c) The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin. J Pharmacol Exp Ther 229:182–187

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984d) Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin. J Pharmacol Exp Ther 230:665–669

    PubMed  CAS  Google Scholar 

  • Simpson LL (1985) Pharmacological experiments on the binding and internalization of the 50000-dalton carboxy terminus of tetanus toxin at the cholinergic neuromuscular junction. J Pharmacol Exp Ther 234:100–105

    PubMed  CAS  Google Scholar 

  • Simpson LL, Hoch DH (1985) Neuropharmacological characterization of fragment B from tetanus toxin. J Pharmacol Exp Ther 232:223–227

    PubMed  CAS  Google Scholar 

  • Simpson LL, Rapport MM (1971) Ganglioside inactivation of botulinum toxin. J Neurochem 18:1341–1343

    PubMed  CAS  Google Scholar 

  • Smith LA, Middlebrook JL (1985) Botulinum and tetanus neurotoxins inhibit guanylate cyclase activity in synaptosomes and cultured nerve cells. Toxicon 23:611

    Google Scholar 

  • Smith LD (1977) Botulism. The organism, its toxins, the disease. Thomas, Springfield

    Google Scholar 

  • Spitzer N (1972) Miniature end-plate potentials at mammalian neuromuscular junctions poisoned by botulinum toxin. Nature 237:26–27

    CAS  Google Scholar 

  • Stanley EF, Drachman DB (1983) Botulinum toxin blocks quantal but not non-quantal release of ACh at the neuromuscular junction. Brain Res 261:172–175

    PubMed  CAS  Google Scholar 

  • Stöckel K, Schwab M, Thoenen H (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res 99:1–16

    PubMed  Google Scholar 

  • Stöckel K, Schwab M, Thoenen H (1977) Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res 132:273–285

    Google Scholar 

  • Sugimoto N, Higashida H, Ozutsumi K, Miki N, Matsuda M (1983) Tetanus toxin blocks Ca spikes in neuroblastoma clone NIE-115 cells. Biochem Biophys Res Comm 115:788–793

    PubMed  CAS  Google Scholar 

  • Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44:419–448

    PubMed  CAS  Google Scholar 

  • Syuto B, Kubo S (1981) Separation and characterization of heavy and light chains from Clostridium botulinum type C toxin and their reconstitution. J Biol Chem 256:3712–3718

    PubMed  CAS  Google Scholar 

  • Tarlov IM, Ling H, Yamada H (1973) Neuronal pathology in experimental local tetanus: clinical implications. Neurology 23:580–591

    PubMed  CAS  Google Scholar 

  • Taylor CF, Britton P, van Heyningen S (1983) Similarities in the heavy and light chains of tetanus toxin suggested by their amino acid compositions. Biochem J 209:897–899

    PubMed  CAS  Google Scholar 

  • Thesleff S (1960) Supersensitivity of skeletal muscle produced by botulinum toxin. J Physiol (Lond) 151:598–607

    CAS  Google Scholar 

  • Thesleff S, Molgo J, Lundh H (1983) Botulinum toxin and 4-aminoquinoline induce a similar abnormal type of spontaneous quantal transmitter release at the rat neuromuscular junction. Brain Res 264:89–97

    PubMed  CAS  Google Scholar 

  • Tomono Y, Naito I, Watanabe K (1984) Glycosphingolipid pattern of rat kidney. Dependence of age and sex. Biochim Biophys Acta 796:199–204

    PubMed  CAS  Google Scholar 

  • Tonge DA (1974) Chronic effects of botulinum toxin on neuromuscular transmission and sensitivity to acetylcholine in slow and fast skeletal muscle of the mouse. J Physiol (Lond) 241:127–139

    CAS  Google Scholar 

  • Tremblay JP, Laurie RE, Colonnier M (1983) Is the MEPP due to the release of one vesicle or to the simultaneous release of several vesicles at one active zone? Brain Res Rev 6:299–314

    CAS  Google Scholar 

  • Trojanowski J, Schmidt ML (1984) Interneuronal transfer of axonally transported proteins: studies with HRP and HRP conjugates of wheat germ agglutinin, cholera toxin and the B subunit of cholera toxin. Brain Res 311:366–369

    PubMed  CAS  Google Scholar 

  • Trojanowski J, Gonatas JO, Gonatas NK (1981) Conjugates of horseradish peroxidase (HRP) with cholera toxin and wheat germ agglutinin are superior to free HRP as orthogradely transported markers. Brain Res 223:381–385

    PubMed  CAS  Google Scholar 

  • Turpin A, Raynaud M (1959) La toxine tetanique. Ann Inst Pasteur 97:718–732

    CAS  Google Scholar 

  • van Heyningen S (1976) Binding of ganglioside by the chains of tetanus toxin. FEBS Lett 68:5–7

    PubMed  Google Scholar 

  • van Heyningen S (1980) Tetanus toxin. Pharmacol Ther 11:141–157

    PubMed  Google Scholar 

  • van Heyningen S (1984) The action of cholera toxin. In: Alouf JE, Fehrenbach FJ, Freer JH, Jeljaszewicz J (eds) Bacterial protein toxins. Academic London, pp 347–352

    Google Scholar 

  • van Heyningen WE (1974) Les recepteurs des membranes cellulaires pour les toxines tetaniques et choleriques ou les delices de l’ignorance. Bull Inst Pasteur 72:433–464

    Google Scholar 

  • van Heyningen WE, Mellanby J (1968) The effects of cerebrosides and other lipids on the fixation of tetanus toxin by ganglioside. J Gen Microbiol 52:447–454

    Google Scholar 

  • van Heyningen WE, Mellanby JH (1971) Tetanus toxin. In: Kadis S, Montie TC, Ajl SJ (eds) Microbial toxins. II. Academic, New York, London, pp 69–108

    Google Scholar 

  • van Heyningen WE, Mellanby J (1973) A note on the specific fixation, specific deactivation and nonspecific inactivation of bacterial toxins by gangliosides. Naunyn Schmiedebergs Arch Pharmacol 276:297–302

    PubMed  Google Scholar 

  • Veronesi R (ed) (1981) Tetanus. Important new concepts. Excerpta Medica, Amsterdam, Oxford, Princeton

    Google Scholar 

  • Vinét G, Frédette V (1968) Un bacteriophage dans une culture de Clostridium botulinum C. Rev Can Biol Exp 27:73–74

    Google Scholar 

  • Vuillamy T, Messenger EA (1981) Tetanus toxin: a marker of amphibian neuronal differentiation in vitro. Neurosci Lett 22:87–90

    Google Scholar 

  • Vyskocil F, Illes P (1977) Non-quantal release of transmitter at mouse neuromuscular junction and its dependence on the activity of Na+-K+ATPase. Pflügers Arch 370:295–297

    PubMed  CAS  Google Scholar 

  • Ward WHJ, Britton P, van Heyningen S (1981) The hydrophobicities of cholera toxin, tetanus toxin and their components. Biochem J 199:457–460

    PubMed  CAS  Google Scholar 

  • Wassermann A, Takaki I (1898) Über tetanusantitoxische Eigenschaften des normalen Centralnerven-systems. Klin Wochenschr 35:5–6

    Google Scholar 

  • Weiler U, Taylor C, Habermann E (1986) Quantitative comparison between tetanus toxin, some fragments and toxoid for binding and axonal transport in the rat. Toxicon (in press)

    Google Scholar 

  • Wellhöner HH (1982) Tetanus neurotoxin. Rev Physiol Biochem Pharmacol 93:1–68

    PubMed  Google Scholar 

  • Wendon LMB (1980) On the action of tetanus toxin at the rat neuromuscular junction. J Physiol (Lond) 300:23 P

    Google Scholar 

  • Wendon LMB, Gill DM (1982) Tetanus toxin action on cultured nerve cells. Does it modify a neuronal protein? Brain Res 238:292–297

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Skaggs KK, Reale RR (1984) Retrograde axonal transport of antibodies to synaptic membrane components. Brain Res 304:162–165

    PubMed  CAS  Google Scholar 

  • Wernig A, Stöver H, Tonge D (1977) The labelling of motor end-plates in skeletal muscle of mice with 125I tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol 298:37–42

    PubMed  CAS  Google Scholar 

  • Wiegand H, Wellhöner HH (1977) The action of botulinum A neurotoxin on the inhibition by antidromic stimulation of the lumbar monosynaptic reflex. Naunyn Schmiedebergs Arch Pharmacol 298:235–238

    PubMed  CAS  Google Scholar 

  • Wiegand H, Erdmann G, Wellhöner HH (1976) 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 292:161–165

    PubMed  CAS  Google Scholar 

  • Wieraszko A (1985) Attenuation of inhibitory processes in the central nervous system by tetanus toxin: An in vitro study on rat hippocampal slices. Life Sci 37:2059–2065

    PubMed  CAS  Google Scholar 

  • Williams RS, Tse CK, Dolly JO, Hambleton P, Melling J (1983) Radio-iodination of botulinum neurotoxin type A with retention of its biological activity and its binding to brain synaptosomes. Eur J Biochem 131:437–445

    PubMed  CAS  Google Scholar 

  • Wonnacott S, Marchbanks RM (1976) Inhibition by botulinum toxin of depolarization-evoked release of 14C acetylcholine release from synaptosomes in vitro. Biochem J 156:701–712

    PubMed  CAS  Google Scholar 

  • Wright GP (1955) The neurotoxins of Clostridium botulinum and Clostridium tetani. Pharmacol Rev 7:413–465

    PubMed  CAS  Google Scholar 

  • Yamaizumi M, Uchida T, Takamatsu K, Okada Y (1982) Intracellular stability of diphtheria toxin fragment A in the presence and absence of anti-fragment A antibody. Proc Natl Acad Sci USA 79:461–465

    PubMed  CAS  Google Scholar 

  • Yavin E, Habig WH (1984) Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition. J Neurochem 42:1313–1320

    PubMed  CAS  Google Scholar 

  • Yavin E, Yavin Z, Habig WH, Hardegree MC, Kohn LD (1981) Tetanus toxin association with developing neuronal cell cultures. Kinetic parameters and evidence for ganglioside-mediated internalization. J Biol Chem 256:7014–7022

    PubMed  CAS  Google Scholar 

  • Yavin E, Yavin Z, Kohn LD (1983) Temperature-mediated interaction of tetanus toxin with cerebral neuron cultures: characterization of a neuraminidase-insensitive toxin receptor complex. J Neurochem 40:1212–1219

    PubMed  CAS  Google Scholar 

  • Yavin E (1984) Gangliosides mediate association of tetanus toxin with neural cells in culture. Arch Biochem Biophys 230:129–137

    PubMed  CAS  Google Scholar 

  • Yavin Z, Yavin E, Kohn LD (1982) Sequestration of tetanus toxin in developing neuronal cell cultures. J Neurosci Res 7:267–278

    PubMed  CAS  Google Scholar 

  • Zalman LS, Wisnieski BJ (1984) Mechanism of insertion of diphtheria toxin: peptide entry and pore size determinations. Proc Natl Acad Sci USA [Biol Sci] 81:3341–3346

    CAS  Google Scholar 

  • Zimmermann JM, Piffaretti JCI (1977) Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells. Analysis by immunofluorescence. Naunyn Schmiedebergs Arch Pharmacol 296:271–277

    Google Scholar 

  • Zimmermann W, Dreyer F, Schmitt A (1981) Immunohistochemical localization of tetanus toxin binding at the motor end-plates of frog and mouse. Pflügers Arch 391: R 40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Habermann, E., Dreyer, F. (1986). Clostridial Neurotoxins: Handling and Action at the Cellular and Molecular Level. In: Clarke, A., et al. Current Topics in Microbiology and Immunology 129. Current Topics in Microbiology and Immunology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71399-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71399-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71401-6

  • Online ISBN: 978-3-642-71399-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics