Skip to main content

Trophic Behaviour and Related Community Feeding Activities of Heterotrophic Marine Protists

  • Conference paper
Protozoa and Their Role in Marine Processes

Part of the book series: NATO ASI Series ((ASIG,volume 25))

Abstract

As a consequence of their evolutionary diversity in form and function the protista of aquatic ecosystems exhibit a great variety of complex trophodynamic interactions, which confounds attempts to produce gross estimates of their in situ feeding rates. It is our view that studies of trophic behaviour at species and taxon level and quantification of community ingestion rates, are needed to develop an understanding of how food webs operate. New behavioral observations (e.g. veil/pallium feeding in dinoflagellates, Gaines and Taylor 1984, Jacobson and Anderson 1986, or small, aloricate planktonic ciliates feeding on bacteria, Sherr and Sherr 1987) suggest possible directions for future quantitative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson J (1980) Descriptive biochemistry and physiology of the Chrysophycea. In: Levandowsky M, Hutner SH (eds.) Biochemistry and Physiology of Protozoa. Vol 2, Academic Press, New York

    Google Scholar 

  • Alongi DM (1987) The distribution and composition of deep-sea microbenthos in a bathyal region of the western Coral Sea. Deep-Sea Res 34: 1245–1254

    Article  CAS  Google Scholar 

  • Admiraal W, Venekamp LAH (1986) Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth J Sea Res 20:61–66

    Article  Google Scholar 

  • Albright LJ, Sherr EB, Sherr BF, Fallon RD (1987) Grazing of ciliated protozoa on free and particle-attached bacteria. Mar Ecol Prog Ser 38:125–129

    Article  Google Scholar 

  • Andersen P, Fenchel T (1985) Bacterivory by microheterotrophic flagellates in seawater samples. Limnol Oceanogr 30:198–202

    Article  Google Scholar 

  • Andersen P, Sorensen HM (1986) Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters. Mar Ecol Prog Ser 33:99–109

    Article  Google Scholar 

  • Anderson OR (1976) Ultrastructure of a colonial radiolarian Collozoum inerve and a cytochemical determination of the role of its zooxanthellae. Tissue and Cell 8:195–208

    Article  PubMed  CAS  Google Scholar 

  • Anderson OR (1977) Fine structure of a marine amoeba associated with a blue-green alga in the Sargasso Sea. J Protozool 24:370–376

    Google Scholar 

  • Anderson OR (1978a) Light and electron microscopic observations of feeding behavior, nutrition, and reproduction in laboratory cultures of Thalasslcolla nucleata. Tissue Cell 10:401–412

    PubMed  CAS  Google Scholar 

  • Anderson OR (1978b) Fine structure of a symbiont-bearing colonial radiolarian, Collosphaera globularis, and 14C isotopic evidence for assimilation of organic substances from its zooxanthellae. J Ultrastruct Res 62:181–189

    Article  PubMed  CAS  Google Scholar 

  • Anderson OR (1980) Radiolaria. In: Levandowsky M, Hutner S (eds.), Biochemistry and Physiology of Protozoa. 2nd ed, Vol 3, Academic Press, New York, p 1

    Google Scholar 

  • Anderson OR (1983a) Radiolaria. Springer-Verlag, New York

    Book  Google Scholar 

  • Anderson OR (1983b) The Radiolarian Symbiosis. In: Goff LJ (ed.), Algal Symbiosis. Cambridge Univ Press, p 69

    Google Scholar 

  • Anderson OR (1988) Comparative Protozoology: Ecology, Physiology, Life History. Springer-Verlag, New York

    Google Scholar 

  • Anderson OR, Be AWH (1976a) A cytochemical fine structure study of phagotrophy in a planktonic foraminifera, Hastigerina pelagica (d’Orbigny). Biol Bull 151:437–449

    Article  Google Scholar 

  • Anderson OR, Be AWH (1976b) The ultrastructure of a planktonic foraminifera Globigerinoides sacculifer (Brady) and its symbiotic dinoflagellates. J Foraminiferal Res 6:1–21

    Article  Google Scholar 

  • Anderson OR, Botfield M (1983) Biochemical and fine structure evidence for cellular specialization in a large spumellarian radiolarian Thalassicolla nucleata. Mar Biol 72:235–241

    Article  CAS  Google Scholar 

  • Anderson OR, Spindler M, Be AWH, Hemleben C (1979) Trophic activity of planktonic foraminifera. J Mar Biol Ass UK 59:791–799

    Article  Google Scholar 

  • Anderson OR, Swanberg NR, Bennett P (1983) Assimilation of symbiont-derived photosynthates in some solitary and colonial radiolaria. Mar Biol 77:265–269

    Article  CAS  Google Scholar 

  • Anderson OR, Swanberg NR, Bennett P (1984) An estimate of predation rate and relative preference for algal versus crustacean prey by a spongiose skeletal radiolarian. Mar Biol 78:205–207

    Article  Google Scholar 

  • Anderson OR, Swanberg NR, Bennett P (1985) Laboratory studies of the ecological significance of host-algal nutritional associations in solitary and colonial radiolaria. J Mar Biol Ass UK 65:263–272

    Article  CAS  Google Scholar 

  • Andersson A, Larsson U, Hagstrom A (1986) Size-selective grazing by a microflagellate on pelagic bacteria. Mar Ecol Prog Ser 33:51–57

    Article  Google Scholar 

  • Antipa GA, Martin K, Rintz MT (1983) A note on the possible ecological significance of Chemotaxis in certain ciliated protozoa. J Protozool 30:55–57

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Grey JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bardele C (1974) Transport of materials in the Suctorian tentacle. Symp Soc Exp Biol #28. Transport at the cellular level. Cambridge Univ Press, p 191

    Google Scholar 

  • Barker HA (1935) The culture and physiology of the marine dino-flagellates. Arch Microbiol 6:157–181

    Article  Google Scholar 

  • Barlow RG, Burkill PH, Mantoura RFC (1988) Grazing and degradation of algal pigments by the marine protozoan Oxyrrhis marina. J exp Mar Biol Ecol 119:119–129

    Article  CAS  Google Scholar 

  • Bé AWH (1982) Biology of planktonic foraminifera. In: Broadhead TW (ed.) Foraminifera: notes for a short course. Univ Tennessee Dept Geol Sci Studies in Geology 6

    Google Scholar 

  • Bé AWH, Hemleben C, Anderson OR, Spindler M, Hacunda J, Tuntivate-Choy S (1977) Laboratory and field observations of living planktonic foraminifera. Micropaleontology 23:155–179

    Article  Google Scholar 

  • Beers JR, Stewart GL (1971) Microzooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep-Sea Res 18:861–883

    Google Scholar 

  • Berk S, Colwell RR, Small EB (1976) A study of feeding responses to bacterial prey by estuarine ciliates. Trans Am Microsc Soc 95:514–520

    Article  Google Scholar 

  • Biecheler B, (1952) Recherches sur les Peridiniens. Bull biol Fr Belg 36:1–149

    Google Scholar 

  • Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–494

    Article  PubMed  CAS  Google Scholar 

  • Blackbourn DJ (1974) The feeding biology of tintinnid Protozoa and some other inshore microzooplankton. PhD Thesis, Univ British Columbia, Vancouver, p 244

    Google Scholar 

  • Bloem J, Starink M, Bar-Gillissen M-JB, Cappenberg TE (1988) Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures. Appl Environ Microbiol 54:3113–3121

    PubMed  CAS  Google Scholar 

  • Borass ME, Estep KW, Johnson PW, Sieburth JMcN (1988) Phagotrophic phototrophs: the ecological significance of mixotrophy. J Protozool 35:249–252

    Google Scholar 

  • Borsheim KY (1984) Clearance rates of bacteria-sized particles by freshwater ciliates, measured with mono-disperse fluorescent latex beads. Oecologia 63:286–288

    Article  Google Scholar 

  • Bovee EC, Cordele DC (1971) Feeding on gastrotrichs by the heliozoan Actinophyrys sol. Trans Amer Micros Soc 10:365–369

    Article  Google Scholar 

  • Bromley RG, Nordmann E (1971) Maastrichtian adherent foraminifera encircling clionid pores. Bull Geol Soc Den 20:362–368

    Google Scholar 

  • Brooker BE, (1971) Fine structure of Bodo saltans and Bodo candatus (Zoomastigophora:Protozoa) and their affinities with the Trypanosomatidae. Bull British Museum Nat Hist 22:81–102

    Google Scholar 

  • Burkill PH (1982) Ciliates and other microplankton components of a near-shore food-web: standing stocks and production processes. Annls Inst Oceanogr (Paris) 58:335–350

    Google Scholar 

  • Burkill PH, Mantoura RFC, Llewellyn CA, Owens NJP (1987) Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar Biol 93:581–590

    Article  CAS  Google Scholar 

  • Burzell LA (1973) Observations on the proboscis-cytopharynx and flagella in Rhynchomonas metabolita Pshenen 1964 (Zoomastigophora Bodonidae). J Protozool 20:385–393

    PubMed  CAS  Google Scholar 

  • Burzell LA (1975) Fine structure of Bodo curvifilus Griessmann. J Protozool 22:35–39

    PubMed  CAS  Google Scholar 

  • Butterfield CT, Purdy WC, Theriault EJ (1931) Studies on natural purification in polluted waters. IV The influence of plankton on the biochemical oxidation of organic matter. Public Health Report No 46:393–426

    Article  CAS  Google Scholar 

  • Cachon J (1964) Contribution a l’étude des peridiniens parasites. Cytologie, cycles evolutifs. Ann Sci Nat Zool Biol Animal 6:1–158

    Google Scholar 

  • Cachon J, Cachon M (1987) Parasitic dinoflagellates. In: Taylor, FJR (ed), The biology of dinoflagellates, Blackwell Sci Pub, Oxford, p 571

    Google Scholar 

  • Campbell L, Carpenter EJ (1986) Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus sp using the sea water dilution and selective inhibitor techniques. Mar Ecol Prog Ser 33:121–129

    Article  Google Scholar 

  • Capriulo GM (1982) Feeding of field-collected tintinnid microzooplankton on natural food. Mar Biol 71:73–86

    Article  Google Scholar 

  • Capriulo GM (1990) Feeding related ecology of marine protozoa. In: GM Capriulo (ed), Ecology of Marine Protozoa, Oxford Univ Press. In press

    Google Scholar 

  • Capriulo GM, Carpenter EJ (1980) Grazing by 35 to 202 urn microzooplankton in Long Island Sound. Mar Biol 56:319–326

    Article  Google Scholar 

  • Capriulo GM, Ninivaggi DV (1982) A comparison of the feeding activities of field collected tintinnids and copepods fed identical natural particle assemblages. Annls Inst Oceanogr (Paris) 58:325–334

    Google Scholar 

  • Capriulo GM, Carpenter EJ (1983) Abundance, species composition, and feeding impact of tintinnid microzooplankton in central Long Island Sound. Mar Ecol Prog Ser 10:277–288

    Article  Google Scholar 

  • Capriulo GM, Small EB (1986) Discovery of an apostome ciliate (Collinia beringensis, n sp) endoparasitic in the Bering Sea euphausiid Thysanoessa inermis. Dis Aquat Organ 1:141–146

    Article  Google Scholar 

  • Capriulo GM, Taveras J, Gold K (1986) Ciliate feeding: effect of food presence or absence on occurrence of striae in tintinnids. Mar Ecol Prog Ser 30:145–158

    Article  Google Scholar 

  • Capriulo GM, Schreiner RA, Dexter BL (1988) Differential growth of Euplotes vannus fed fragmented versus unfragmented chains of Skeletonema costatum. Mar Ecol Prog Ser 47:205–209

    Article  Google Scholar 

  • Caron DA (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol 13:203–218

    Article  Google Scholar 

  • Caron DA, Be AWH (1984) Predicted and observed feeding rates of the spinose planktonic foraminifera Globigerinoides sacculifer. Bull Mar Sci 35:1–10

    Google Scholar 

  • Caron DA, Davis PG, Madin LP, Sieburth JMcN (1982) Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218:795–797

    Article  PubMed  CAS  Google Scholar 

  • Caron DA, Goldman JC, Dennett MR (1986) Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl environ Microbiol 52:1340–1347

    PubMed  CAS  Google Scholar 

  • Caron DA, Swanberg NR (1988) Prey and feeding selectivity of planktonic sarcodines. Abstract NATO ASI, Protozoa and their role in marine processes

    Google Scholar 

  • Chen YT (1950) The biology of Peranema trichophorum. Quart J Microscop Sci 91:279–308

    Google Scholar 

  • Christiansen B (1964) Spiculosiphon radiata, a new foraminifera from northern Norway. Astarte 25:1–8

    Google Scholar 

  • Christiansen B (1971) Notes on the biology of foraminifera. Vie et milieu Troisième Sym European de Biologie Marine S 22:465–478

    Google Scholar 

  • Coats DW (1988) Duboscquella cachoni n sp a parasitic dinoflagellate lethal to its tintinnine host Eutlntlnnus pectinis. J Protozool 35: 607–617

    Google Scholar 

  • Coats DW, Heisler JJ. Spatial and temporal occurrence of the parasitic dinoflagellate Duboscquella cachoni and its tintinnine host Eutlntlnnus pectinis in Chesapeake Bay. Submitted

    Google Scholar 

  • Corliss JO (1979) The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. 2nd ed Pergamon Press, New York, p 455

    Google Scholar 

  • Curds CR, Cockburn A (1968) Studies on the growth and feeding of Tetrahymena pyriformis in axenic and nonaxenic culture. J Gen Microbiol 54:343–358

    PubMed  CAS  Google Scholar 

  • Cynar FJ, Estep KW, Sieburth JMcN (1985) The detection and characterization of bacteria-sized protists in ‘protist-free’ filtrates and their potential impact on experimental marine ecology. Microb Ecol 11:281–288

    Article  Google Scholar 

  • Daggett P, Nerad TA (1982) Axenic cultivation of Bodo edax and Bodo ancinatus and some observations on feeding rate in nonoxenic culture. J Protozool 29: 290–291

    Google Scholar 

  • Davis PG, Caron DA, Sieburth JMcN (1978) Oceanic amoebae from the North Atlantic: culture, distribution, and taxonomy. Trans Amer Micros Soc 97:73–88

    Article  Google Scholar 

  • Davis PG, Sieburth JMcN (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: Estimation by frequency of dividing-divided bacteria. Mar Ecol Prog Ser 19:237–246

    Article  Google Scholar 

  • Delaca TE (1982) Use of dissolved amino acids by the foraminifera Notodendrodes antarctikos. Am Zool 22:683–690

    CAS  Google Scholar 

  • Dodge JD, Crawford RM (1970) The morphology and fine structure of Ceratium hirundinella (Dinophyceae). J Phycol 6:137–149

    Google Scholar 

  • Dodge JD, Crawford RM (1974) Fine structure of the dinoflagellate Oxyrrhis marina III Phagotrophy. Protistologica 10:239–244

    Google Scholar 

  • Drebes G (1969) Dissodinium pseudocalani sp nov lin parasitischer Dinoflagellat auf Copepodeneiem. Helgol Wiss Meeresu 19:58–67

    Article  Google Scholar 

  • Droop MR (1953) Phagotrophy in Oxyrrhis marina. Nature 172–250–252

    Google Scholar 

  • Droop MR (1954) A note on the isolation of small marine algae and flagellates in pure culture. J Mar Biol Ass UK 33:511–514

    Article  Google Scholar 

  • Droop MR (1959) Water soluble factors in nutrition of Oxyrrhis marina. J Mar Biol Ass UK 38:605–620

    Article  Google Scholar 

  • Ducklow HW (1983) Production and fate of bacteria in the oceans. Bioscience 33:494–501

    Article  Google Scholar 

  • Ducklow H, Hill SM (1985) The growth of heterotrophic bacteria in the surface waters of warm core rings. Limnol Oceanogr 30:239–259

    Article  Google Scholar 

  • Elbrachter M, Drebes G (1978) Life cycles, phylogeny and taxonomy of Dissodinium and Pyrocystis (Dinophyta). Helgol Wiss Meeresu 31:347–366

    Article  Google Scholar 

  • Estep KW, Davis PG, Keller MD, Sieburth JMcN (1986) How important are oceanic algal nanoflagellates in bacterivory? Limnol Oceanogr 31:646–650

    Article  Google Scholar 

  • Faure-Fremiet E (1924) Contribution a la connaissance des infusoires planktoniques. Bull Biol France Belgique 6:1–171

    Google Scholar 

  • Febvre-Chevalier C, Febvre J (1986) Motility mechanisms in the actinopods (Protozoa). A review with particular attention to axopodial contraction/extension, and movement of nonactino-filament systems. Cell Motility ad the Cytoskeleton 6:198–200

    Article  CAS  Google Scholar 

  • Fenchel T (1967) The ecology of marine microbenthos, I. The quantitative importance of ciliates as compared with metazoans in various types of sediments. Ophelia 4:121–137

    Google Scholar 

  • Fenchel T (1968) The ecology of marine microbenthos II. The food of marine benthic ciliates. Ophelia 5:73–121

    Google Scholar 

  • Fenchel T (1980a) Suspension feeding in ciliated protozoa: structure and function of feeding organelles. Arch Protistenk 123:239–260

    Article  Google Scholar 

  • Fenchel T (1980b) Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb Ecol 6:1–11

    Article  Google Scholar 

  • Fenchel T (1980c) Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb Ecol 6:13–25

    Article  Google Scholar 

  • Fenchel T (1980d) Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25:733–738

    Article  Google Scholar 

  • Fenchel T (1982a) Ecology of heterotrophic microflagellates I. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223

    Article  Google Scholar 

  • Fenchel T (1982b) Ecology of heterotrophic microflagellates II. Bio-energetics and growth. Mar Ecol Prog Ser 8:225–232

    Article  Google Scholar 

  • Fenchel T (1982c) Ecology of heterotrophic microflagellates III. Adaptations to heterogeneous environments. Mar Ecol Prog Ser 9:25–33

    Article  Google Scholar 

  • Fenchel T (1982d) Ecology of heterotrophic microflagellates IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Article  Google Scholar 

  • Fenchel T (1982e) The bioenergetics of a heterotrophic microflagellate. Annls Inst Oceanogr 58:55–60

    Google Scholar 

  • Fenchel T (1986a) Protozon filter feeding In: Corliss JO, Patterson DJ (eds), Progress in Protistology Vol 1. Biopress Ltd, Bristol, England, p 65

    Google Scholar 

  • Fenchel T (1986b) The ecology of heterotrophic microflagellates. In: Marshall KC (ed), Advances in Microbial Ecology. Plenum Pub Corp 9, p 57

    Google Scholar 

  • Fenchel T (1987) Ecology of Protozoa. Sci Tech Pub and Springer-Verlag, Berlin

    Google Scholar 

  • Fenchel T, Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: Anderson JM, Macfadyen A (eds), The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Sci Pub Ltd, Oxford, p 285

    Google Scholar 

  • Fenchel T, Jonsson PR (1988) The functional biology of Strombidium sulcatum a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar Ecol-Prog Ser 48:1–15

    Article  Google Scholar 

  • Fenchel T, Small EB (1980) Structure and function of the oral cavity and its organelles in the hymenostome ciliate Glaucoma. Trans Am Microscop Soc 99:52–60

    Article  Google Scholar 

  • Finlay BJ (1978) Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Freshwater Biol 8:327–341

    Article  Google Scholar 

  • Frey LC, Stoermer EF (1980) Dinoflagellate phagotrophy in the upper Great Lakes. Trans Am Microscop Soc 99:439–444

    Article  Google Scholar 

  • Fuhrman JA, McManus GB (1984) Do bacteria-sized marine eukaryotes consume significant bacterial production? Science 224:1257–1260

    Article  PubMed  CAS  Google Scholar 

  • Gaines G, Taylor FJR (1984) Extracellular digestion in marine dinoflagellates. J Plank Res 6:1057–1061

    Article  Google Scholar 

  • Gallegos (Submitted) Microzooplankton grazing on phytoplankton in the Rhode River, Maryland: Nonlinear feeding kineticis. Mar Ecol Prog Ser

    Google Scholar 

  • Gifford DJ (1985) Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 23:257–267

    Article  Google Scholar 

  • Glaser D (1988) Simultaneous consumption of bacteria and dissolved organic matter by Tetrahymena pyriformis. Microb Ecol 15:189–201

    Article  Google Scholar 

  • Glover HE, Campbell L, Prezelin BB (1986) Contribution of Synechococcus sp to size fractionated primary productivity in three water masses in the Northwest Atlantic. Ocean Mar Biol 91:193–203

    Article  Google Scholar 

  • Gold K, Storm E, Laval-Peuto M (1979) Scanning electron microscopy of Tintinnopsis parva: studies on particle accumulation and the striae. J Protozool 26:415–419

    Google Scholar 

  • Goldman JC (1984) Conceptual role for microaggregates in pelagic waters. Bull Mar Sci 35:462–476

    Google Scholar 

  • Goldman JC, Caron DA (1985) Experimental studies on an omnivorous microflagellate: Implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res 32:899–915

    Article  Google Scholar 

  • Gooday AJ (1988) A benthic foraminiferal response to the deposition of phytodetritus in the deep-sea. Nature 332:70–73

    Article  Google Scholar 

  • Gast V (1985) Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar Ecol Prog Ser 22:107–120

    Article  Google Scholar 

  • Greissman K (1914) Uber marine Flagellaten. Arch Protistenk 32:1–78

    Google Scholar 

  • Greuet C (1972) La nature trichocystaire due cnidoplaste dans le complexe cnidoplaste nematocyste du Polykrlkos schwartzi Butschli. CR Hebd Seances Acad Sci Paris, Ser D 275:1239–1242

    Google Scholar 

  • Greuet C, Hovasse R (1977) A propose de la genese des nematocystes de Polykrikos schwartzi Butschli. Protistologica 13:145–149

    Google Scholar 

  • Haas LW, Webb KL (1979) Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia. J exp mar Biol Ecol 39:125–134

    Article  Google Scholar 

  • Haberey M (1973a) Die Phagocytose von Oscillatorien durch Thecamoeba sphaeronucleolus I. Lichtoptische Untersuchung Arch Protistenk 115:99–110

    Google Scholar 

  • Haberey M (1973b) Die Phagocytose von Oscillatorien durch Thecamoeba sphaeronucleolus II. Electronmikroscopische Untersuchung Arch Protistenk 115:111–124

    Google Scholar 

  • Hackney CM, Butler RD (1981) Tentacle contraction in glycerinated Discophyra collini and the localization of HNN-Binding filaments. J Cell Sci 47:65–75

    PubMed  CAS  Google Scholar 

  • Hausmann K, Patterson DJ (1982) Feeding in Actlnophrys II. Pseudopod formation and membrane production during prey capture by a heliozoan. Cell motility 2:9–24

    Article  Google Scholar 

  • Heinbokel JF (1978a) Studies on the functional role of tintinnids in the southern California Bight I. Grazing and growth rates in laboratory cultures. Mar Biol 47:177–189

    Article  Google Scholar 

  • Heinbokel JF (1978b) Studies on the functional role of tintinnids in the southern California Bight II. Grazing rates of field populations. Mar Biol 47: 191–197

    Article  Google Scholar 

  • Heinbokel JF, Beers JR (1979) Studies on the functional role of tintinnids in the southern California Bight III. Grazing impact of natural assemblages. Mar Biol 52:23–32

    Article  Google Scholar 

  • Hellung-Larsen P, Leick V, Tommerup N (1986) Chemoattraction in Tetrahymena: on the role of chemokinesis. Biol Bull 170:357–367

    Article  CAS  Google Scholar 

  • Hemleben C, Spindler M, Breitinger I, Deusen WG (1985) Field and laboratory studies on the ontogeny and ecology of some floboratalid species from the Sargasso Sea off Bermuda. J Foram Res 15:254–272

    Article  Google Scholar 

  • Hollibaugh JT, Fuhrman JA, Azam F (1980) Radioactive labeling of natural assemblages of bacterioplankton for use in trophic studies. Limnol Oceanogr 25:172–181

    Article  CAS  Google Scholar 

  • Iturriaga R, Mitchell BG (1986) Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open sea. Mar Ecol Prog Ser 28:291–297

    Article  Google Scholar 

  • Iturriaga R, Marra J (1988) Temporal and spatial variability of chroococcoid cyanobacteria Synechococcus sp specific growth rates and their contribution to primary production in the Sargasso Sea. Mar Ecol Prog Ser 44:175–181

    Article  Google Scholar 

  • Jacobsen DJ, Anderson DM (1986) Thecate heteterotrophic dinoflagellates:feeding behavior and mechanisms. J Phycol 22:249–258

    Article  Google Scholar 

  • Johannes RE (1964) Phosphorus excretion and body size in marine animals: microzooplankton and nutrient regeneration. Science 146:923–924

    Article  PubMed  CAS  Google Scholar 

  • Johannes RE (1965) Influence of marine protozoa on nutrient regeneration. Limnol Oceanogr 10:434–442

    Article  Google Scholar 

  • Johansen PL (1976) A study of tintinnids and other Protozoa in eastern Canadian waters, with special reference to tintinnid feeding, nitrogen excretion, and reproductive rates. PhD Thesis, Dalhousie Univ, Halifax, Nova Scotia, p 156

    Google Scholar 

  • Johnson PW, Xu H-S, Sieburth JMcN (1982) The utilization of chroococcoid cyanobacteria by marine protozooplankters but not by calanoid copepods. Annls Inst Oceanogr (Paris) 5:297–308

    Google Scholar 

  • Jonsson PR (1986) Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265–277

    Article  Google Scholar 

  • Jonsson PR (1987) Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar Microb Food Webs 2:55–68

    CAS  Google Scholar 

  • Kahl A (1930–1935) Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Infusoria) In: Dahl F (ed), Die Tierwelt Deutschlands, Teil 18, 21, 25 and 30 G Fisher, Jena

    Google Scholar 

  • Kamshilov MM (1976) Evolution of the Biosphere. MIR Publishers, Moscow p 269

    Google Scholar 

  • Kimor B (1981) The role of phagotrophic dinoflagellates in marine ecosystems. Kieler Meeresforsch 5:164–173

    Google Scholar 

  • Kopylov AI, Mamayevia RI, Botsanin SF (1980) Energy balance of the colorless flagellate Parabodo attenuatus. Oceanology 20:705–708

    Google Scholar 

  • Kuosa H, Kivi K (submitted) Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea

    Google Scholar 

  • Landry MR, Hassett RP (1982) Estimating the grazing impact of marine micro-zooplankton. Mar Biol 67–283–288

    Google Scholar 

  • Landry MR, Haas LW, Fagerness VL (1984) Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar Ecol Prog Ser 16:127–133

    Article  CAS  Google Scholar 

  • Laval-Peuto M, Febvre M (1986) On plastid symbiosis in Tontonia appendiculariformis (Ciliophora, Oligotrichia). Biosystems 19:137–158

    Article  PubMed  CAS  Google Scholar 

  • Laval-Peuto M, Rassoulzadegan F (1988) Autofluorescence of marine planktonic oligotrichina and other ciliates. Hydrobiologia 159:99–110

    Article  Google Scholar 

  • Leadbeater BSC, Morton C (1974) A microscopical study of a marine species of Codosiga (James-Clark) (Choanflagellata) with special reference to the ingestion of bacteria. Biol J Limn Soc 6:337–347

    Article  Google Scholar 

  • Lee JJ (1982) Physical, chemical and biological quality related food-web interactions as factors in the realized niches of microzooplankton. Annls Inst Oceanogr 58:19–29

    Google Scholar 

  • Lee JJ, Capriulo GM (1990) The Ecology of Marine Protozoa: An Overview In: Capriulo GM (ed), The Ecology of Marine Protozoa Oxford Univ Press, (in press)

    Google Scholar 

  • Lee JJ, Hunter SH, Bovee EC (eds) (1985) Illustrated Guide to the Protozoa Society of Protozoologists and Allen Press, Lawrence, Kansas

    Google Scholar 

  • Lee JJ, Freudenthal, HD, Muller WA, Kossoy V, Pierce S, Grossman R (1963) Growth and physiology of foraminifera in the laboratory III. Initial studies of Rosalina floridana (Cushman). Micropaleontology 9:449–466

    Article  Google Scholar 

  • Lee JJ, Pierce S, M Tentchoff, McLaughlin JA (1961) Growth and physiology of foraminifera in the laboratory I. Collection and maintenance. Micropaleontology 7:461–466

    Article  Google Scholar 

  • Leedale GF (1967) Euglenid flagellates. Prentice Hall Inc New Jersey

    Google Scholar 

  • Leedale GF, Hibberd DJ (1985) Class 1 Phytomastigophorea Calkins, 1909. In: Lee JJ, Hunter SH, Bovee EC (eds) An Illustrated Guide to the Protozoa, Soc of Protozoologists and Allen Press, Lawrence Kansas

    Google Scholar 

  • Lenk SE, Small EB, Gunderson J (1984) Preliminary observations of feeding in the psalmobiotic ciliate Tracheloraphis sp. Origins of Life 13:229–234

    Article  Google Scholar 

  • Leppanen J-M, Bruun JE (1986) The role of pelagic ciliates including the autotrophic Mesodinium rubrum during the spring bloom of 1982 in the open northern Baltic proper. Ophelia 4:147–157

    Google Scholar 

  • Lessard EJ, Swift E (1985) Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Mar Biol 87:289–296

    Article  Google Scholar 

  • Lessard EJ, Caron DA, Ho K, Voytek MA (1987) Grazing impact and food selection of nano-, micro-, and macrozooplankton in natural estuarine communities. EOS 68:1782

    Google Scholar 

  • Lessard EJ, Caron DA, Voytek M, Ho K (Submitted) Grazing impact and food selection of nano-, micro- and macrozooplankton in natural estuarine communities. J Plank Res

    Google Scholar 

  • Levandowsky M, Cheng T, Kehr A, Kim J, Gardner A, Silvern L, Tsang L, Lai L, Chung C, Prakash E (1984) Chemosensory responses to amino acids and certain amines by the ciliate Tetrahymena: a flat capillary assay. Biol Bull 167:322–330

    Article  CAS  Google Scholar 

  • Levandowsky M, Klafter J, White BS (1988) Feeding and swimming behavior in grazing microzooplankton. J Protozool 35:243–246

    Google Scholar 

  • Li WKW, Dickie PM (1985) Growth of bacteria in seawater filtered through 0.2 µm Nuclepore membranes: implications for dilution experiments. Mar Ecol Prog Ser 26:245–252

    Article  Google Scholar 

  • Li WK, Subba Rao DV, Harrison WG, Smith JC, Cullen JJ, Irwin B, Platt T (1983) Autotrophic picoplankton in the tropical ocean. Science 219:292–295

    Article  PubMed  CAS  Google Scholar 

  • Lighthart B (1969) Planktonic and benthic bacterivorous Protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean. J Fish Res Bd Can 26:299–304

    Article  Google Scholar 

  • Lindholm T (1985) Mesodinium rubrum — a unique photosynthetic ciliate. In: Janhasch HW, Williams PJLB (eds), Advances in Aquatic Microbiology Academic Press, London, p 1

    Google Scholar 

  • Lipps JH (1982) Biology/Paleobiology of Foraminifera. In: Broadhead TW (ed), Foraminifera: notes for a short course. Univ of Tennessee Dept of Geol Sci Studies in Geology 6, p 1

    Google Scholar 

  • Lipps JH (1983) Biotic interactions in benthic foraminifera. In: Tevesy MJS, McCall PL (eds), Biotic interactions in recent and fossil benthic communities. Plenum, p 331

    Google Scholar 

  • Loefer JB (1931) Morphology and binary fission in Heteronema acus (Ehrb). Stein Arch Prostistenk 74:449–470

    Google Scholar 

  • Looper JB (1928) Observations on the food reactions of Rctinophrys sol. Biol Bull 54:485–502

    Article  Google Scholar 

  • Lucas MI, Probyn TA, Painting SJ (1987) An experimental study of microflagellate bacterivory: further evidence for the importance and complexity of microplanktonic interactions. S Afr J Mar Sci 5:791–808

    Article  Google Scholar 

  • Luckinbill LS (1974) The effects of space and enrichment on a predator-prey system. Ecology 55:1142–1147

    Article  Google Scholar 

  • Marchant HJ (1985) Choanoflagellates in the antarctic marine food chain In: Siefreid WR, Cody PR, Laws RM (eds), Antartic Nutrient Cycles and Food Webs. Springer-Verlag, Berlin, p 272

    Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells Yale Univ Press, New Haven

    Google Scholar 

  • Margulis L (1981) Symbiosis in Cell Evolution Freeman, San Francisco

    Google Scholar 

  • McManus GB, Fuhrman JA (1986a) Bacterivory in seawater studies with the use of inert fluorescent particles. Limnol Oceanogr 31:420–426

    Article  Google Scholar 

  • McManus GB, Fuhrman JA (1986b) Photosynthetic pigments in the ciliate Laboea strobila from Long Island Sound, USA. J Plankton Res 8:317

    Article  Google Scholar 

  • McManus GB, Fuhrman JA (1988a) Clearance of bacteria-sized particles by natural populations of nano-plankton in the Chesapeake Bay outflow plume. Mar Ecol Prog Ser 42:199–206

    Article  Google Scholar 

  • McManus GB, Furhman JA (1988b) Control of marine bacterioplankton populations: Measurement and significance of grazing. Hydrobiologia 159:51–62

    Article  Google Scholar 

  • Mignot JP (1966) Structur et ultrastructure de guelgues Englenomonadines. Protistologica 2:51–117

    Google Scholar 

  • Mitchell GC, Baker JH, Sleigh MA (1988) Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria. J Protozool 35:219–222

    Google Scholar 

  • Montagnes DJS, Lynn DH (1988) Taxonomy of choreotrichs, the major marine planktonic ciliates. Abstract NATO ASI Protozoa and their role in marine processes

    Google Scholar 

  • Montagnes DJS, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: An assessement of their trophic role. Mar Biol 99:21–30

    Article  Google Scholar 

  • Morey-Gaines G, Elbrachter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed), The Biology of Dino-flagellates. Blackwell Sci Ltd, Oxford

    Google Scholar 

  • Newell RC, Linley EAS (1984) Significance of microheterotrophs in the decomposition of phytoplankton: estimates of carbon and nitrogen flow based on the biomass of plankton communities. Mar Ecol Prog Ser 16:105–119

    Article  Google Scholar 

  • Nisbet B (1974) An ultrastructural study of the feeding apparatus of Peranema trichophorum. J Protozool 21:39–48

    Google Scholar 

  • Nisbit B (1984) Nutrition and feeding strategies in protozoa Croom Helm, London

    Google Scholar 

  • Nyholm K-G (1956) On the life cycle of the foraminiferan Nemogullmia longivariabilis. Zool Biol Upps 31:483–496

    Google Scholar 

  • Nygaard K, Borsheim KY, Thingstad TF (1988) Grazing rates on bacteria by marine heterotrophic microflagellates compared to uptake rates of bacterial-sized monodisperse fluorescent latex beads. Mar Ecol Prog Ser 44:159–165

    Article  Google Scholar 

  • Oparin AI (1957) The Origin of Life on Earth. Pub House Acad Sci USSR, Moscow

    Google Scholar 

  • Pace ML (1988) Bacterial mortality and the fate of bacterial production. Hydrobiologia 159:41–49

    Article  Google Scholar 

  • Pace ML, Bailiff MD (1987) An evaluation of a fluorescent microsphere technique for measuring grazing rates of phagotrophic microorganisms. Mar Ecol Prog Ser 40:185–193

    Article  Google Scholar 

  • Paranjape M (1987) Grazing by microzooplankton in the eastern Canadian arctic in summer, 1983. Mar Ecol Prog Ser 40:239–246

    Article  Google Scholar 

  • Parslow JS, Doucette GJ, Taylor FJR, Harrison PJ (1986) Feeding by the zoof lagellate Pseudobodo sp on the picoplanktonic prasinomonad Micromonas pusilla. Mar Ecol Prog Ser 29:237–246

    Article  Google Scholar 

  • Patterson DJ (1979) On the organization and classification of the protozoan Actinophrys sol Ehrenberg, 1830. Microbios 26:165

    PubMed  CAS  Google Scholar 

  • Patterson DJ, Hausmann K (1981) Feeding by Actinophrys sol (Protista, Heliozoa): I. Light microscopy. Microbios 31:39–55

    PubMed  CAS  Google Scholar 

  • Patterson DJ, Larsen J, Corliss JO (1989) The ecology of heterotrophic flagellates and ciliates living in marine sediments. Progress in Protistology 3:185–277

    Google Scholar 

  • Pierce E, Isquith IR, Repak AJ (1978) Quantitative study of cannibal-giantism in Blepharisma. Acta Protozoologica 17:493–501

    Google Scholar 

  • Pomeroy LR (1974) Significance of microorganisms in carbon and energy flow in marine ecosystems. In: Klug MJ, Reddy CA (eds), Current Perspectives in Microbial Ecology Am Soc Microbiol Washington DC, p 405

    Google Scholar 

  • Pomeroy LR, Wiebe WJ (1988) Energetics of microbial food webs. Hydrobiologia 159:7–18

    Article  Google Scholar 

  • Porter KG, Pace ML, Battey JF (1979) Ciliate protozoans as links in freshwater planktonic food chains. Nature 277:563–565

    Article  Google Scholar 

  • Porter KG, Sherr EB, Sherr BF, Pace M, Sanders RW (1985) Protozoa in planktonic food webs. J Protozool 32: 409–415

    Google Scholar 

  • Proctor LM, Fuhrman JA, Ledbetter MC (1988) Marine bacteriophages and bacterial mortality. EOS 69:1111

    Google Scholar 

  • Pussard M, Rouelle J (1986) Predation de la microflore effet des protozoaines sur la dynamique de population bacterienne. Protistologica 22:105–110

    Google Scholar 

  • Rassoulzadegan F (1978) Dimensions et taux d’ingestion des particules consommees par un tintinnide: Favella ehrenbergii (Clap et Lachm). Jorg Cilié pélagique. Annl Inst Oceanogr Paris 54:17–24

    Google Scholar 

  • Rassoulzadegan F (1982) Dependence of grazing rate, gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg, fed on naturally occurring particulate matter. Annls Inst Oceanogr, Paris 58:177–184

    Google Scholar 

  • Rassoulzadegan F, Etienne M (1981) Grazing rate of the tintinnid Stenosemella ventricosa (Clap & Lachm). Jorg on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol Oceanogr 26:258–270

    Article  Google Scholar 

  • Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol Oceanogr 31:1010–1021

    Article  Google Scholar 

  • Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partition of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159:75–88

    Article  Google Scholar 

  • Repak AJ (1968) Encystment and excystment of the heterotrichous ciliate Blepharisma stoltei Isquith. J Protozool 15:407–412

    Google Scholar 

  • Riley GA (1956) Oceanography of Long Island Sound, 1952–1954 IX. Production and utilization of organic matter. Bull Bingham Oceanographic Coll 15:324–341

    Google Scholar 

  • Rivier A, Brownlee DC, Sheldon RW, Rassoulzadegan F (1985) Growth of microzooplankton: a comparative study of bactivorous zooflagellates and ciliates. Mar Micro Food Webs 1:36–51

    Google Scholar 

  • Rublee PA, Gallegos CL (1989) Use of fluorescently labeled algae (FLA) to estimate microzooplankton grazing rate. Mar Ecol Prog Ser (in press)

    Google Scholar 

  • Rubenstein DI, Koehl MAR (1977) The mechanisms of filter feeding: some theoretical considerations. Am Nat 111:981–994

    Article  Google Scholar 

  • Rudzinska MA (1973) Do Suctorians really feed by suction? Bioscience 23:87–94

    Article  Google Scholar 

  • Salt GW (1967) Predation in an experimental protozoan population (Woodruffia-Paramecium). Ecol Monogr 37:113–144

    Article  Google Scholar 

  • Sanders RW, Porter KG (1986) Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion. Appl Environ Microbiol 52:101–107

    PubMed  CAS  Google Scholar 

  • Sanders RW, Porter KG (1988) Phagotrophic phytoflagellates. In: Marshall KC (ed), Advances in Microbial Ecology, Vol 10. Plenum Publishing Corp

    Google Scholar 

  • Sekiguchi H, Kato T (1976) Influence of Noctiluca’s predation on the Acartia population in Ise Bay, Central Japan. J Oceanogr Soc Japan 32:195–198

    Article  Google Scholar 

  • Servais P, Billen G, Rego JV (1985) Rate of bacterial mortality in aquatic environments. Appl Environ Microbiol 49:1448–1454

    PubMed  CAS  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliff Jr WH (1972) Size distribution of particles in the ocean. Limnol Oceanogr 17: 327–340

    Article  Google Scholar 

  • Sheldon RW, Nival P, Rassoulzadegan F (1986) An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol Oceangr 31:184–189

    Article  Google Scholar 

  • Sherr BF, Sherr EB, Berman T (1982) Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnol Oceanogr 27:765–769

    Article  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Berman T (1983) Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol 45:1196–1201

    PubMed  CAS  Google Scholar 

  • Sherr BF, Sherr EB (1984) Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems In: Klug M, Reddy CA (eds), Current Perspectives in Microbial Ecology. Amer Soc Microbiol Washington, p 412

    Google Scholar 

  • Sherr BF, Sherr EB, Andrew TA, Fallon RD, Newell SY (1986a) Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analysed with selective metabolic inhibitors. Mar Ecol Prog Ser 32:169–180

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF, Fallon RD, Newell SY (1986b) Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol Oceanogr 31:177–183

    Article  Google Scholar 

  • Sherr BF, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol 53:958–965

    PubMed  CAS  Google Scholar 

  • Sherr BF, Sherr EB, Hopkinson CS (1988) Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159:19–26

    Article  Google Scholar 

  • Sherr BF, Sherr EB (submitted) Distribution of numbers, biovolumes, and bacterivores within nanoplanktonic size spectra of apochlorotic nanoflagellates in several marine pelagic systems. Mar Microb Food Webs

    Google Scholar 

  • Sherr BF, Sherr EB, Pedros-Alio C (submitted) Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar Ecol Prog Ser

    Google Scholar 

  • Sherr EB, Sherr BF (1983) Double staining epifluorescence technique to assess frequency of dividing cells and bacterivory in natural populations of heterotrophic microprotozoa. Appl environ microbiol 46:1388–1393

    PubMed  CAS  Google Scholar 

  • Sherr EB (1988) Direct utilization of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335:348–351

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF, Paffenhofer G-A (1986c) Phagotrophic protozoa as food for metazoans: a fmissing’ trophic link in marine pelagic food webs? Mar Microb Food Webs 1:61–80

    Google Scholar 

  • Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Article  Google Scholar 

  • Sibbald MJ, Albright LJ (1988) Aggregated and free bacteria as food sources for heterotrophic microflagellates. Appl Environ microbiol 54:613–616

    PubMed  CAS  Google Scholar 

  • Sibbald MJ, Albright LJ, Sibbald PR (1987) Chemosensory responses of a heterotrophic microflagellate to bacteria and several nitrogen compounds. Mar Ecol Prog Ser 36:201–204

    Article  CAS  Google Scholar 

  • Sibbald MJ, Sibbald PR, Albright LJ (1988) How advantageous is a sensory prey detection mechanism to predatory microflagellates? J Plank Res 10:455–464

    Article  Google Scholar 

  • Sieburth JMcN (1979) Sea Microbes Oxford Univ Press

    Google Scholar 

  • Sieburth JMcN (1984) Protozoan bacterivory in pelagic marine waters. In: Hobbie JE, Williams PJleB (eds), Heterotrophic activity in the sea Plenum Press, New York, p 405

    Google Scholar 

  • Sieburth JMcN, Davis PG (1982) The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Sea. Annls Inst Oceanogr 58:285–296

    Google Scholar 

  • Sieracki ME, Haas LW, Caron DA, Lessard EJ (1987) The effect of fixation on particle retention by micro-flagellates: underestimation of grazing rates. Mar Ecol Prog Ser 38:251–258

    Article  Google Scholar 

  • Silver MW, Gowing MM, Brownlee DC, Corliss JO (1984) Ciliated protozoa associated with sinking oceanic detritus. Nature 309:246–248

    Article  Google Scholar 

  • Sleigh MA (1964) Flagella movement of the sessile flagellates Actlnomonas,Condonoslga, Monas and Proteriodendron. Quart J Microsc Sci 105:405–414

    Google Scholar 

  • Sleigh MA (1989) Protozoa and other protists. Edward Arnold, London

    Google Scholar 

  • Small EB (1973) A study of ciliated protozoa from a small polluted stream in east-central Illinois. Amer Zool 13:225–230

    Google Scholar 

  • Small EB (1984) An essay on the evolution of ciliophoran oral cytoarchitecture based on descent from within a karyorelictean ancestry. Origins of Life 13:217–228

    Article  Google Scholar 

  • Small EB, Lynn DH (1985) Phylum Ciliophora Doflein. In: Lee JJ, Hutner SH, Bovee EC (eds), Illustrated Guide to the Protozoa Allen Press and Soc of Protozoologists, Lawrence, Kansas, p 393

    Google Scholar 

  • Smetacek VS (1981) The annual cycle of protozooplankton in the Kiel Bight. Mar Biol 63:1–11

    Article  Google Scholar 

  • Smith REH, Geider RJ, Platt T (1988) Microplankton productivity in the oligotrophic ocean. Nature 311:252–254

    Article  Google Scholar 

  • Sorokin Yul (1977) The heterotrophic phase of plankton succession in the Japan Sea. Mar Biol 41:107–117

    Article  Google Scholar 

  • Sorokin Yul (1981) Microheterotrophic organisms in marine ecosystems. In: Longhurst AR (ed), Analysis of Marine Ecosystems Academic Press, New York, p 293

    Google Scholar 

  • Spindler M, Hemleben C, Salomons JB, Smit LP (1984) Feeding behavior of some planktonic foraminifers in laboratory cultures. J Foram Res 14:237

    Article  Google Scholar 

  • Spittler P (1973) Feeding experiments with tintinnids. Oikos 15:128–132

    Google Scholar 

  • Spoon D (1986) Discovery of a predatory procaryote feeding on palmelloid and motile euglenids in the Georgetown coral reef microcosm Abstract 39th annual meeting, Society of Protozoologists

    Google Scholar 

  • Stoecker D, Guillard RR, Kavee RM (1981) Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. Biol Bull 160:136–145

    Article  Google Scholar 

  • Stoecker DK, Davis LH, Anderson DM (1984) Fine scale spatial correlations between planktonic ciliates and dinoflagellates. J Plank Res 6:829–842

    Article  Google Scholar 

  • Stoecker DK, Cucci TL, Hulburt EM, Yentsch CM (1986) Selective feeding by Balanion sp (Ciliata: Balanionidae) on phytoplankton that best support its growth. J Exp Mar Biol Ecol 95:113–130

    Article  Google Scholar 

  • Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326:790–792

    Article  Google Scholar 

  • Straskrabova-Prokesova V, Legner M (1966) Interrelations between bacteria and protozoa during glucose oxidation in water. Int Rev Gesamten Hydrobiol 51:279–293

    Article  Google Scholar 

  • Suttle CA, Chan AM, Taylor WD Harrison (1986) Grazing of planktonic diatoms by microflagellates. J Plank Res 8:393–398

    Article  Google Scholar 

  • Swanberg NR (1983) The trophic role of colonial radiolaria in oligotrophic oceanic environments. Limnol Oceanogr 28:655–666

    Article  Google Scholar 

  • Swanberg NR, Anderson OR (1985) The nutrition of radiolarians: trophic activity of some solitary Spumellaria. Limnol Oceanogr 30:646–652

    Article  Google Scholar 

  • Swanberg NR, Anderson OR, Lindsey JL, Bennett P (1986) The biology of Physematium muelleri: trophic activity. Deep-Sea Res 33:913–922

    Article  CAS  Google Scholar 

  • Swanberg NR, Harbison GR (1980) The ecology of Collozoum longiforme, sp nov, a new colonial radiolarian from the equatorial Atlantic Ocean. Deep-Sea Res 27A:715–732

    Article  Google Scholar 

  • Taniguchi A, Kawakami R (1983) Growth rates of ciliate Eutintinnus lususundae and Favella taralkaensis observed in the laboratory culture experiments. Bull Plank Soc Japan 30:33–40

    Google Scholar 

  • Taylor DL, Seliger H (eds) (1979) Toxic dinoflagellate blooms Dev Mar Biol I. Elsevier/North Hollander, New York

    Google Scholar 

  • Taylor GT, Pace ML (1987) Validity of eukaryotic inhibitors for assessing production and grazing mortality of marine bacterioplankton. Appl Environ Microbiol 53:119–128

    PubMed  CAS  Google Scholar 

  • Taylor GT, Karl DM, Pace ML (1986) Impact of bacteria and zooflagellates on the composition of sinking particles: an in situ experiment. Mar Ecol Prog Ser 29:141–155

    Article  Google Scholar 

  • Townsend DW, Cammen LM (1985) A deep protozoan maximum in the Gulf of Maine. Mar Ecol Prog Ser 24:177–182

    Article  Google Scholar 

  • Tremaine SC, Mills AL (1987a) Tests of the critical assumptions of the dilution method for estimating bacterivory by microeukaryotes. Appl Environ Microbiol 53:2914–2921

    PubMed  CAS  Google Scholar 

  • Tremaine SC, Mills AL (1987b) Inadequacy of the eukaryotic inhibitor cycloheximide in studies of protozoan grazing on bacteria at the freshwater-sediment interface. Appl Environ Microbiol 53:1969–1972

    PubMed  CAS  Google Scholar 

  • Triemer RE, Fritz L (1987) Structure and operation of the feeding apparatus in a colorless euglenoid, Entosiphon sulcatum. J Protozool 34:39–47

    Google Scholar 

  • Turley CM, Newell RC, Robins DB (1986) Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar Ecol Prog Ser 33:59–70

    Article  Google Scholar 

  • Turley CM, Lochte K, Patterson DJ (1988) A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Res 35:1079–1092

    Article  Google Scholar 

  • Van Houten J (1988) Chemoresponse mechanisms: toward the molecular level. J Protozool 35:241–243

    Google Scholar 

  • Verity PG (1985) Grazing, respiration, excretion, and growth rates of tintinnids. Limnol Oceanogr 30:1268–1282

    Article  Google Scholar 

  • Verity PG (1986a) Grazing of,phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar Ecol Prog Ser 29:105–115

    Article  Google Scholar 

  • Verity PG (1986b) Growth rates of natural tintinnid populations in Narragansett Bay. Mar Ecol Prog Ser 29:117–126

    Article  Google Scholar 

  • Verity PG (1987) Abundance, community composition, size distribution and production rates of tintinnids in Narragansett Bay, Rhode Island. Est Coast Shelf Sci 24:671–690

    Article  CAS  Google Scholar 

  • Verity PG (1988) Chemosensory behavior in marine planktonic ciliates. Bull Mar Sci 43:772–782

    Google Scholar 

  • Verity PG, Stoecker D (1982) Effects of Olisthodiscus luteus on the growth and abundance of tintinnids. Mar Biol 72:79–87

    Article  Google Scholar 

  • Verity PG, Villareal TA (1986) The relative food value of diatoms, dinoflagellates, flagellates, and cyanobacteria for tintinnid ciliates. Arch Protistenk 131:71–84

    Article  Google Scholar 

  • Vickerman K (1976) The diversity of kinetoplastid flagellates. In: Lumsden WHR, Evans DA (eds), Biology of the Kinetoplastida VI. Academic Press, London, p 5

    Google Scholar 

  • Wailes GH (1927) Rhizopodia and Heliozoa from British Columbia. Ann Mag Nat Hist 9 Ser 20:153–156

    Article  Google Scholar 

  • Wailes GH (1937) Canadian Pacific fauna I. Protozoa (a, lobosa, b, reticulosa, c, heliozoa, d, radiolaria). Biol Bd Canada, Toronto, p 14

    Google Scholar 

  • Wessenberg H, Antipa GA (1970) Capture and ingestion of Paramecium by Didinium nasutum. J Protozool 17:250–270

    Google Scholar 

  • Wheeler PA, Kirchman DL (1986) Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol Oceanogr 31:998–1009

    Article  CAS  Google Scholar 

  • Wikner J, Andersson A, Normark S, Hagstrom A (1986) Use of genetically marked minicells as a probe in measurement of predation on bacteria in aquatic environments. Appl Environ Microbiol 52:4–8

    PubMed  CAS  Google Scholar 

  • Wikner J, Hagstrom A (1988) Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the Marine Environment. Mar Ecol Prog Ser 47:137–145

    Article  Google Scholar 

  • Wright RT, Coffin RB (1984) Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Microb Ecol 10:137–149

    Article  Google Scholar 

  • Zumwalt GS, Delaca TE (1980) Utilization of brachiopod feeding currents by epizoic foraminifera. J Paleontol 54:477–484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Capriulo, G.M., Sherr, E.B., Sherr, B.F. (1991). Trophic Behaviour and Related Community Feeding Activities of Heterotrophic Marine Protists. In: Reid, P.C., Turley, C.M., Burkill, P.H. (eds) Protozoa and Their Role in Marine Processes. NATO ASI Series, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73181-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73181-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73183-9

  • Online ISBN: 978-3-642-73181-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics