Skip to main content

Cholinergic Co-transmitters

  • Chapter
The Cholinergic Synapse

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 86))

Abstract

The concept of cholinergic neurotransmission sensu stricto, that cholinergic neurons transmit information solely by releasing the small molecular mass endogenous neurotransmitter acetylcholine (ACh), has been increasingly questioned during the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abens J, Westlind A, Bartfai T (1984) Chronic atropine treatment causes increase in VIP receptors in rat cerebral cortex. Peptides 5:375–377

    PubMed  CAS  Google Scholar 

  • Aberer W, Kostron H, Huber E, Winkler H (1978) A characterization of the nucleotide uptake by chromaffin granules of bovine adrenal medulla. Biochem J 172:353–360

    PubMed  CAS  Google Scholar 

  • Abood LG, Koketsu K, Miyomoto S (1962) Outflux of various phosphates during membrane depolarisation of excitable tissues. Am J Physiol 202:469–474

    PubMed  CAS  Google Scholar 

  • Agoston DV (1988 a) Biophysical and biochemical characterization of synaptic vesicles storing neuropeptides and acetylcholine isolated from myenteric neurons. J Neurochem (in press)

    Google Scholar 

  • Agoston DV (1988 b) Isolation and characterization of secretory granules storing a VIP-like peptide in Torpedo electromotor nerve terminals. J Neurochem (in press)

    Google Scholar 

  • Agoston DV, Conlon JM (1986) Presence of vasoactive intestinal polypeptide-like immunoreactivity in the cholinergic electromotor system of Torpedo marmorata. J Neurochem 47:445–453

    PubMed  CAS  Google Scholar 

  • Agoston DV, Conlon JM (1987 a) Presence of a neuropeptide in a model cholinergic system. Ann NY Acad Sci 493:135–138

    CAS  Google Scholar 

  • Agoston DV, Conlon JM (1987 b) Association of neuropeptides with cholinergic neurons. In: Dowdall MJ, Hawthorne JM (eds) Molecular and cellular mechanisms of cholinergic function. Horwood, Chichester, pp 460–471

    Google Scholar 

  • Agoston DV, Lisziewicz J (1987) The translation of electrical coding into chemical coding leads to the secretion of different types of transmitter in myenteric neurons. J Neurochem (in press)

    Google Scholar 

  • Ágoston DV, Ballmann M, Conlon JM, Dowe GHC, Whittaker VP (1985 a) Isolation of neuropeptide-containing vesicles from the guinea pig ileum. J Neurochem 45:398–406

    PubMed  Google Scholar 

  • Ágoston DV, Kosh JW, Lisziewicz J, Whittaker VP (1985 b) Separation of recycling and reserve synaptic vesicles from cholinergic nerve terminals of the myenteric plexus of guinea pig ileum. J Neurochem 44:299–305

    PubMed  Google Scholar 

  • Ágoston DV, Dowe GHC, Fiedler W, Giompres PE, Roed IS, Walker JH, Yamaguchi T, Whittaker VP (1986) The use of synaptic vesicle proteoglycan as a stable marker in kinetic studies of vesicle recycling. J Neurochem 47:1584–1592

    PubMed  Google Scholar 

  • Agoston DV, Borroni E, Richardson PJ (1987) Cholinergic suface antigen Chol-1 is present in a subclass of VIP-containing rat cortical synaptosomes. J Neurochem 50:1659–1662

    Google Scholar 

  • Agoston DV, Conlon JM, Whittaker VP (1988) Selective depletion of the acetylcholine and VIP of the guinea-pig myenteric plexus by differential mobilization of distinct transmitter pools. Exp Brain Res (in press)

    Google Scholar 

  • Akasu T, Hirai K, Koketsu K (1981) Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity. Br J Pharmacol 74:505–507

    PubMed  CAS  Google Scholar 

  • Altschuler RA, Parakkal MH, Fex J (1983) Localization of enkephalin-like immunoreactivity in acetylcholinesterase positive cells in the guinea-pig lateral superior olivary complex that project to the cochlea. Neuroscience 9:621–630

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–245

    PubMed  CAS  Google Scholar 

  • Barker JL, Smith TG Jr (eds) (1983) The role of peptides in neuronal function. Dekker, New York

    Google Scholar 

  • Bartfai T, Iverfeldt K, Brodin E, Ogren S-O (1986) Functional consequences of coexistence of classical and peptide neurotransmitters. Prog Brain Res 68:321–330

    PubMed  CAS  Google Scholar 

  • Björklund A, Hökfelt T (eds) (1983) Methods in chemical neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Branton WD, Phillips HS, Jan YN (1986) The LHRH family of peptide messengers in the frog nervous system. Prog Brain Res 68:205–215

    PubMed  CAS  Google Scholar 

  • Brownstein MJ (1982) Post-translational processing of neuropeptide precursors. TINS 5:318–320

    CAS  Google Scholar 

  • Brownstein MJ, Saavedra JM, Axelrod J, Zeman GH, Carpenter DO (1974) Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proc Natl Acad Sci USA 7:4662–4665

    Google Scholar 

  • Brownstein MJ, Russel JT, Gainer H (1982) Biosynthesis of posterior pituitary hormones. In: Ganong WF, Martini L (eds) Frontiers in endocrinology, vol 7. Raven, New York, pp 31–43

    Google Scholar 

  • Bryant MG, Polak JM, Modlin J, Bloom SR, Albuquerque RJ, Pearse AGE (1976) Possible dual role for vasoactive intestinale peptide as gastrointestinal hormone and neurotransmitter substance. Lancet 1:991–993

    PubMed  CAS  Google Scholar 

  • Buckley G, Consolo S, Giacobini E, Sjöqvist F (1967) Choline acetylase in innervated and denervated sympathetic ganglia and ganglion cells of the cat. Acta Physiol Scand 71:348–356

    PubMed  CAS  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Burnstock G (1975) Purinergic transmission. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 5. Plenum, New York, pp 131–194

    Google Scholar 

  • Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones. Raven, New York, pp 107–118

    Google Scholar 

  • Burnstock G (1982) The co-transmitter hypothesis, with special reference to the storage and release of ATP with noradrenaline and acetylcholine. In: Cuello AA (ed) Cotransmission. Macmillan, London, pp 151–163

    Google Scholar 

  • Campbell G, Gibbins IL, Morris JL, Furness JB, Costa M, Oliver JR, Beardsley AM, Murphy R (1982) Somatostatin is contained and released from cholinergic nerves in the heart of the toad Bufo marinus. Neuroscience 7:2013–2023

    PubMed  CAS  Google Scholar 

  • Carmichael SW, Winkler H (1985) The adrenal chromaffin cell. Sci Am 253:30–39

    Google Scholar 

  • Carney DN, Cuttitta F, Moody TW, Minna JD (1987) Selective stimulation of small cell lung cancer clonal growth by bombesin and gastrin-releasing peptide. Cancer Res 47:821–825

    PubMed  CAS  Google Scholar 

  • Chan-Palay V, Palay SL (1984 a) Coexistence in human and primate neuromuscular junctions of enzymes synthesizing four neuroactive substances. In: Chan-Palay V, Palay SL (eds) Coexistence of neuroactive substances in neurons. Wiley and Sons, New York, pp 141–155

    Google Scholar 

  • Chan-Palay V, Palay SL (eds) (1984 b) Coexistence of neuroactive substances in neurons. Wiley and Sons, New York

    Google Scholar 

  • Chan-Palay V, Engel AG, Palay SL, Wu J-Y (1982a) Synthesizing enzymes for four neuroactive substances in motor neurons and neuromuscular junctions: light and electronmicroscopic immunocytochemistry. Proc Natl Acad Sci USA 79:6717–6721

    PubMed  CAS  Google Scholar 

  • Chan-Palay V, Engel AG, Wu J-Y, Palay SL (1982 b) Coexistence in human and primate neuromuscular junctions of enzymes synthesizing acetylcholine, catecholamine, taurine and γ-aminobutyric acid. Proc Natl Acad Sci USA 79:7027–7030

    PubMed  CAS  Google Scholar 

  • Chun JJ, Nakamura MJ, Shatz CJ (1987) Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons. Nature 325:617–620

    PubMed  CAS  Google Scholar 

  • Cleugh J, Gaddum JH, Mitchell AA, Smith MW, Whittaker VP (1984) Substance P in brain extracts. J Physiol (Lond) 170:69–85

    Google Scholar 

  • Cohen ML, Landry AS (1980) Vasoactive intestinal polypeptide: increased tone, enhancement of acetylcholine release, and stimulation of adenylate cyclase in intestinal smooth muscle. Life Sci 26:811–822

    PubMed  CAS  Google Scholar 

  • Coons AH (1958) Fluorescent antibody methods. In: Danielli JF (ed) General cytochemical methods. Academic, New York, pp 399–422

    Google Scholar 

  • Cooper PE, Martin JB (1982) Neuroendocrinology and brain peptides. TINS 5:186–189

    CAS  Google Scholar 

  • Costa M, Buffa R, Furness JB, Solcia EL (1980) Immunohistochemical localization of polypeptides in peripheral autonomic nerves using whole mount preparation. Histochemistry 65:157–165

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Gibbins IL (1986 a) Chemical coding of enteric neurons. Prog Brain Res 68:217–241

    PubMed  CAS  Google Scholar 

  • Costa E, Furness JB, Llewellyn-Smith I (1986b) Histochemistry of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 2nd edn. Raven, New York

    Google Scholar 

  • Cuello AC (ed) (1981) Co-transmission. Macmillan, London

    Google Scholar 

  • Cuello AC, Jessel TM, Kanazawa I, Iversen LL (1977) Substance P: localization in synaptic vesicles in the rat central nervous system. J Neurochem 29:747–751

    PubMed  CAS  Google Scholar 

  • Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischer A, Minna JD (1985) Bombesin-like peptide can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826

    PubMed  CAS  Google Scholar 

  • Dahlström A (1968) Effect of colchicine on amine storage granules in sympathetic nerves of rat. Eur J Pharmacol 5:111–113

    PubMed  Google Scholar 

  • Day NC, Wien D, Michaelson DM (1985) Saturable [D-Ala2,D-Leu5]-enkephalin transport into cholinergic synaptic vesicles. FEBS Lett 183:25–28

    PubMed  CAS  Google Scholar 

  • deGroat WC, Kawatani M, Booth AM (1986) Enkephalinergic modulation of cholinergic transmission in parasympathetic ganglia of the cat urinary bladder. In: Hanin I (ed) Dynamics of cholinergic function. Plenum, New York, pp 1007–1017

    Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol Chemother 34:451–474

    CAS  Google Scholar 

  • Douglas WW, Poisner AM (1966) On the relation between ATP splitting and secretion in the adrenal chromaffin cell: extrusion of ATP - unhydrolysed - during release of catecholamines. J Physiol (Lond) 183:249–256

    CAS  Google Scholar 

  • Douglass J, Civelli O, Herbert E (1984) Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem 53:15

    Google Scholar 

  • Dowdall MJ (1978) Adenine nucleotides in cholinergic transmission: presynaptic aspects. J Physiol (Paris) 74:497–501

    CAS  Google Scholar 

  • Dowdall MJ, Boyne AF, Whittaker VP (1974) Adenosine triphosphate, a constituent of cholinergic synaptic vesicles. Biochem J 140:1–12

    PubMed  CAS  Google Scholar 

  • Dowe GHC, Kilbinger H, Whittaker VP (1980) Isolation of cholinergic synaptic vesicles from the myenteric plexus of guinea-pig small intestine. J Neurochem 35:993–1003

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Hoffer BJ (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Br J Pharmacol 69:59–68

    PubMed  CAS  Google Scholar 

  • Eccles JC, McGeer PL (1979) Ionotropic and metabotropic neurotransmission. TINS 2:39–40

    Google Scholar 

  • Eckenstein F, Baughman RW (1984) Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature 309:153–155

    PubMed  CAS  Google Scholar 

  • Eiper BA, Mains RE, Herbert E (1986) Peptides in the nervous system. TINS 9:463–468

    Google Scholar 

  • Emson PC (1979) Peptides as neurotransmitter candidates in the mammalian CNS. Prog Neurobiol 13:61–116

    CAS  Google Scholar 

  • Erichsen JT, Karten HJ, Eidred WD, Brecha NC (1982) Localization of substance P-like and enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: light and electron microscopy. J Neurosci 2:994–1003

    PubMed  CAS  Google Scholar 

  • Evans RM, Amara S, Rosenfeld MG (1983) Molecular events in developmental regulation of neuroendocrine genes: characterization of the novel neuropeptide CGRP. Cold Spring Harbor Symp Quant Biol 48:413–417

    PubMed  CAS  Google Scholar 

  • Ewald DA (1976) Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy phosphate adenine nucleotides. J Membr Biol 29:47–65

    PubMed  CAS  Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Fex J, Altschuler RA (1981) Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat. Proc Natl Acad Sci USA 78:1255–1259

    PubMed  CAS  Google Scholar 

  • Floor E, Leeman SE (1982) Synaptic vesicles containing Substance P purified by chromatography on controlled pore glass. Neuroscience 7:1647–1655

    PubMed  CAS  Google Scholar 

  • Forrester T, Williams CA (1977) Release of adenosine triphosphate from adult heart cells in response to hypoxia. J Physiol (Lond) 268:371–390

    CAS  Google Scholar 

  • Fredholm BB (1976) Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic A-receptor blockade. Acta Physiol Scand 96:422–430

    CAS  Google Scholar 

  • Fredholm BB, Hedquist P (1980) Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem Pharmacol 29:1635–1643

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Lundberg JM (1982) VIP-induced cyclic AMP formation in the cat submandibular gland. Potentiation by carbacholine. Acta Physiol Scand 114:157–159

    PubMed  CAS  Google Scholar 

  • Füldner H-H, Stadler H (1981) The storage of acetylcholine and ATP in synaptic vesicles. Hoppe Seylers Z Physiol Chem 362:198–205

    Google Scholar 

  • Furness JB, Costa M, Keast JR (1984) Choline acetyltransferase and peptide immunoreactivity of submucosus neurons in the small intestine of the guinea-pig. Cell Tissue Res 237:329–336

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Gibbins IL, Llewellyn-Smith IJ, Oliver JR (1985) Neurochemically similar myenteric and submucosus neurons directly traced to the mucosa of the small intestine. Cell Tissue Res 241:155–163

    PubMed  CAS  Google Scholar 

  • Fyffe REW, Perl ER (1984) Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skins? Proc Natl Acad Sci USA 81:6890–6893

    PubMed  CAS  Google Scholar 

  • Gainer H, Brownstein MJ (1981) Neuropeptides. In: Siegel GJ, Albers RW, Agranoff BW, Katzman R (eds) Basic neurochemistry, 3rd edn. Little, Brown, Boston, pp 269–296

    Google Scholar 

  • Geffard M, Vieillemaringe J, Heinrich-Roch A-M, Duris P (1985 a) Anti-acetylcholine antibodies and first immunocytochemical application in insect brain. Neurosci Lett 57:1–6

    PubMed  CAS  Google Scholar 

  • Geffard M, McRae-Degueurce A, Souan ML (1985 b) Immunocytochemical detection of acetylcholine in the rat central nervous system. Science 229:77–79

    PubMed  CAS  Google Scholar 

  • Gershon MD, Payette R, Teitelman G, Rothman TP (1984) Neuronal commitment and phenotypic expression by developing enteric neurones. In: Chan-Palay V, Palay S (eds) Coexistence of neuroactive substances in neurons. Wiley and Sons, New York, pp 181–204

    Google Scholar 

  • Ginsborg BL, Hirst GDS (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the cat. J Physiol (Lond) 224:629–645

    CAS  Google Scholar 

  • Giompres PE, Zimmermann H, Whittaker VP (1981) Changes in the biochemical and biophysical parameters of cholinergic synaptic vesicles on transmitter release and during a subsequent period of rest. Neuroscience 6:775–785

    PubMed  CAS  Google Scholar 

  • Glazer EJ, Basbaum AI (1980) Leucine enkephalin: Localization in and axoplasmic transport by sacral parasympathetic preganglionic neurons. Science 208:1479–1481

    PubMed  CAS  Google Scholar 

  • Gold MR (1982) The effect of vasoactive intestinal polypeptide on neuromuscular transmission in the frog. J Physiol (Lond) 327:325–335

    CAS  Google Scholar 

  • Gold MR (1984) The action of vasoactive intestinale polypeptide at the frog’s neuromuscular junction. In: Chan-Palay V, Palay S (eds) Coexistence of neuroactive substances in neurons. Wiley and Sons, New York, pp 161–170

    Google Scholar 

  • Gordon AS, Guillory RJ, Diamond I, Hucho F (1979) ATP-binding proteins in acetylcholine receptor-enriched membranes. FEBS Lett 108:37–39

    PubMed  CAS  Google Scholar 

  • Grondai EJM, Zimmermann H (1986) Ectonucleotidase activities associated with cholinergic synaptosomes isolated from Torpedo electric organ. J Neurochem 47:871–881

    Google Scholar 

  • Guillemin R (1978) Peptides in the brain: the new endocrinology of the neuron. Science 202:390–402

    PubMed  CAS  Google Scholar 

  • Häggblad J, Eriksson H, Heilbronn E (1985) Effects of extracellular ATP on 86Rb influx in chick myotubes; indications of a cotransmitter role in neuromuscular transmission. In: Changeux J-P, Hucho F, Maelicke A, Neumann A (eds) Molecular basis of nerve activity. de Gruyter, Berlin, pp 185–193

    Google Scholar 

  • Hebb CO (1956) Choline acetylase in the developing nervous system of the rabbit and guinea-pig. J Physiol (Lond) 133:566–570

    CAS  Google Scholar 

  • Hedlund B, Abens J, Bartfai T (1983) Vasoactive intestinal polypeptide and muscarinic receptors: supersensitivity induced by long-term atropine treatment. Science 220:519–521

    PubMed  CAS  Google Scholar 

  • Hedlund B, Abens J, Westlind A, Bartfai T (1986) Vasoactive intestinal polypeptide- muscarinic cholinergic interactions. In: Hanin I (ed) Dynamics of cholinergic function. Plenum, New York, pp 1019–1025

    Google Scholar 

  • Hedquist P, Fredholm BB (1979) Inhibitory effect of adenosine on adrenergic neuroeffector transmission in the rabbit heart. Acta Physiol Scand 105:120–122

    Google Scholar 

  • Hökfelt T, Terenius L (1987) More on receptor mismatch. TINS 10:22–23

    Google Scholar 

  • Hökfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptinergic neurones. Nature 284:515–521

    PubMed  Google Scholar 

  • Hökfelt T, Lundberg JM, Skirboll L, Johansson O, Schultzberg M, Vincent SR (1982) Coexistence of classical transmitters and peptides in neurones. In: Cuello AC (ed) Coexistence. Macmillan, London, pp 77–125

    Google Scholar 

  • Hökfelt T, Fuxe K, Pernow B (eds) (1986 a) Coexistence of neuronal messengers: a new principle in chemical transmission. Prog Brain Res 68

    Google Scholar 

  • Hökfelt T, Holets VR, Staines W, Meister B, Melander T, Schalling M, Schultzberg M, Freedman J, Björklund H, Olson L, Lindh B, Elfvin L-G, Lundberg JM, Lindgren JA, Samuelsson B, Pernow B, Terenius L, Post C, Everitt B, Goldstein M (1986 b) Coexistence of neuronal messengers — an overview. Prog Brain Res 68:33–70

    PubMed  Google Scholar 

  • Holton FA, Holton P (1954) The capillary dilatator substances in dry powders of spinal roots: a possible role of ATP in chemical transmission from nerve endings. J Physiol (Lond) 126:124–140

    CAS  Google Scholar 

  • Israël M, Meunier FM (1978) The release of ATP triggered by action and its possible physiological significance: retrograde transmission. J Physiol (Paris) 74:485–490

    Google Scholar 

  • Israël M, Lesbats B, Meunier FM, Stinnakre J (1976) Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc R Soc Lond [Biol] 193:461–468

    Google Scholar 

  • Israël M, Lesbats B, Manaranche R, Marsal J, Mastour-Franchon P, Meunier FM (1977) Related changes in amounts of ACh and ATP in resting and active Torpedo electroplaque synapses. J Neurochem 28:1259–1267

    PubMed  Google Scholar 

  • Israël M, Lesbats B, Manaranche R, Meunier FM, Frachon P (1980) Retrograde inhibition of transmitter release by ATP. J Neurochem 34:923–932

    PubMed  Google Scholar 

  • Iversen LL, Iversen SD, Snyder SH (eds) (1983) Neuropeptides. Plenum, New York (Handbook of psychopharmacology)

    Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38000-dalton membrane protein (p 38) present in synaptic vesicles. Proc Natl Acad Sci USA 82:4137–4141

    PubMed  CAS  Google Scholar 

  • Jahr CE, Jessel TM (1983) ATP excites as subpopulation of rat dorsal horn neurones. Nature 304:730–733

    PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (1983 a) Coexistence and co-release of acetylcholine and the LHRH-like peptide from the same preganglionic fibers in frog sympathetic ganglia. Fed Proc 42:2929–2938

    PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY (1983 b) Some features of peptidergic transmission. Prog Brain Res 58:49–59

    PubMed  CAS  Google Scholar 

  • Jan YN, Bowers CW, Branton D, Evans L, Jan LY (1983) Peptides in neuronal function: Studies using frog autonomic ganglia. Cold Spring Harbour Symp Quant Biol 48:363–374

    CAS  Google Scholar 

  • Johansson O, Lundberg JM (1981) Ultrastructural localization of VIP-like immunoreactivity in large dense-core vesicles of ‘cholinergic-type’ nerve terminals in cat exocrine glands. Neuroscience 6:847–862

    PubMed  CAS  Google Scholar 

  • Kása P (1970) Identification of cholinergic neurons in the spinal cord: an electron histo-chemical study of choline acetyltransferase. J Physiol (Lond) 210:89–90

    Google Scholar 

  • Kása P (1986) The cholinergic systems in brain and spinal cord. Prog Neurobiol 26:211–272

    PubMed  Google Scholar 

  • Kása P, Mann SP, Hebb CO (1970) Localization of choline acetyltransferase. Histochemistry at the light microscope level. Nature 226:814–816

    PubMed  Google Scholar 

  • Kawatani M, Rutigliano M, deGroat WC (1985 a) Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinale polypeptide. Science 229:879–881

    PubMed  CAS  Google Scholar 

  • Kawatani M, Rutigliano M, deGroat WC (1985 b) Selective facilitatory effect of vasoactive intestinal polypeptide on muscarinic firing in vesical ganglia of the cat. Brain Res 336:223–234

    PubMed  CAS  Google Scholar 

  • Kawatani M, Rutiglian M, de Groat WC (1986) Selective facilitatory effects of vasoactive intestinal polypeptide on muscarinic mechanisms in sympathetic and parasympathetic ganglia of the cat. In: Hanin I (ed) Dynamics of cholinergic function. Plenum, New York, pp 1057–1066

    Google Scholar 

  • Keller F, Zimmermann H (1984) EctoATPase activity at the cholinergic nerve endings of the Torpedo electric organ. Life Sci 33:2635–2641

    Google Scholar 

  • Kilbinger H, Wessler I (1980) Inhibition by acetylcholine of the stimulation-evoked release of 3H-acetylcholine from the guinea pig myenteric plexus. Neuroscience 5:1331–1340

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Kyoshima K, Olschowska JA, Jakobowitz DM (1983) Vasoactive intestinal polypeptide immunoreactive and cholinergic nerves in the whole mount preparation of the major cerebral arteries of the rat. Histochemistry 79:377–381

    PubMed  CAS  Google Scholar 

  • Koelle GB, Friedenwald JS (1949) A histochemical method for localizing Cholinesterase activity. Proc Soc Exp Biol Med 70:612–622

    Google Scholar 

  • Kolb H-A, Wakelam MJO (1983) Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Nature 303:621–623

    PubMed  CAS  Google Scholar 

  • Koller KJ, Brownstein MJ (1987) Use of a cDNA to identify a supposed precursor protein containing valosin. Nature 325:542–545

    PubMed  CAS  Google Scholar 

  • Kondo H, Kuramoto H, Wainer BH, Yanaihara N (1985) Evidence for the coexistence of acetylcholine and enkephalin in the sympathetic preganglionic neurons of rats. Brain Res 335:309–314

    PubMed  CAS  Google Scholar 

  • Krieger DT (1983) Brain peptides: what, where, why? Science 222:975–985

    PubMed  CAS  Google Scholar 

  • Krieger DT, Martin JB (1981) Brain peptides. N Engl J Med 304:876–951

    PubMed  CAS  Google Scholar 

  • Krieger DT, Brownstein MJ, Martin JB (1983) Introduction. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley and Sons, New York, pp 1–15

    Google Scholar 

  • Kuhar MJ (1985) The mismatch problem in receptor mapping studies. TINS 8:190–191

    CAS  Google Scholar 

  • Kuperman AS, Volpert VA, Okamoto M (1964) Release of adenine nucleotide from nerve axons. Nature 204:1000–1001

    PubMed  CAS  Google Scholar 

  • Kuroda Y (1978) Physiological role of adenosine derivatives which are released during neurotransmission in mammalian brain. J Physiol (Paris) 74:463–470

    CAS  Google Scholar 

  • Kusunoki M, Tsai LH, Taniyama K, Tanaka C (1986) Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus. Am J Physiol 251:G51–G55

    PubMed  CAS  Google Scholar 

  • Lagercrantz H (1976) On the composition and function of large dense cored vesicles in sympathetic nerves. Neuroscience 1:81–92

    PubMed  CAS  Google Scholar 

  • Lamour Y, Dutar P, Jobert A (1983) Effects of neuropeptides on rat cortical neurons: laminar distribution and interaction with the effect of acetylcholine. Neuroscience 10:107–117

    PubMed  CAS  Google Scholar 

  • Landis ST (1984) Neurotransmitter plasticity and coexistence during the development of cholinergic-sympathetic neurons in culture and in vivo. In: Chan-Palay V, Palay SL (eds) Coexistence of neuroactive substances in neurons. Wiley and Sons, New York, pp 205–216

    Google Scholar 

  • Landis SC, Fredieu JR (1986) Coexistence of calcitonin gene-related peptide and vasoactive intestinal peptide in cholinergic sympathetic innervation of rat sweat glands. Brain Res 377:177–181

    PubMed  CAS  Google Scholar 

  • Larsson L-I, Fahrenkrug J, Holst JJ, Schaffalitzky de Muckadell OB (1978) Innervation of the pancreas by vasoactive intestincal polypeptide (VIP) immunoreactive nerves. Life Sci 22:773–780

    PubMed  CAS  Google Scholar 

  • Leblanc GG, Landis SC (1986) Development of choline acetyltransferase activity in the cholinergic sympathetic innervation of sweat glands. J Neurosci 6:220–226

    Google Scholar 

  • Lee DA, Witzemann V (1983) Photoaffinity labeling of a synaptic vesicle specific nucleotide transport system from Torpedo marmorata. Biochemistry 22:6123–6130

    PubMed  CAS  Google Scholar 

  • Levey AI, Wainer BH, Mufson EJ, Mesulam M-M (1983) Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum. Neuroscience 9:9–22

    PubMed  CAS  Google Scholar 

  • Loh YP, Gainer H (1983) Biosynthesis and processing of neuropeptides. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley and Sons, New York, pp 80–116

    Google Scholar 

  • Loh YP, Brownstein MJ, Gainer H (1984) Proteolysis in neuropeptide processing and other neural function. Annu Rev Neurosci 7:189–222

    PubMed  CAS  Google Scholar 

  • Luine VN, Rostene W, Rhodes J, McEwen BS (1984) Activation of choline acetyltransferase by vasoactive intestinal peptide. J Neurochem 42:1131–1134

    PubMed  CAS  Google Scholar 

  • Lundberg JM (1981) Evidence for coexistence of vasoactive intestinal polypeptide and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies. Acta Physiol Scand [Suppl] 496:1–57

    CAS  Google Scholar 

  • Lundberg JM, Hökfelt T (1983) Coexistence of peptides and classical neurotransmitters. TINS 4:325–333

    Google Scholar 

  • Lundberg JM, Hökfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripherial autonomic and sensory neurons - functional and pharmacological implications. Prog Brain Res 68:241–262

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hökfelt T, Schultzberg M, Uvnäs-Wallensten K, Kohler C, Said S (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience 4:1539–1559

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Fahrenkrug J, Brimijoin S (1981 a) Characteristics of the axonal transport of vasoactive intestinal polypeptide — VIP — in nerve of the cat. Acta Physiol Scand 112:427–436

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Fried G, Fahrenkrug J, Holmstedt B, Hökfelt T, Lagercrantz H, Lundgren G, Anggard A (1981 b) Subcellular fractionation of cat submandibular gland: comparative studies on the distribution of acetylcholine and vasoactive intestinal polypeptide. Neuroscience 6:1001–1010

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hedlund B, Bartfai T (1982) Vasoactive intestinal polypeptide (VIP) enhances muscarinic ligand binding in the cat submandibular salivary gland. Nature 295:147–149

    PubMed  CAS  Google Scholar 

  • Luqmani YA (1981) Nucleotide uptake by isolated cholinergic synaptic vesicles: evidence for a carrier of adenosine 5´-triphosphate. Neuroscience 6:1011–1021

    PubMed  CAS  Google Scholar 

  • Lynch DR, Snyder SH (1986) Neuropeptides: multiple molecular forms, metabolic pathways and receptors. Annu Rev Biochem 55:773–799

    PubMed  CAS  Google Scholar 

  • McDonald WF, White DT (1985) Nature of extrasynaptosomal accumulation of endogenous adenosine evoked by K+ and veratridine. J Neurochem 45:791–797

    Google Scholar 

  • McGeer PL, Eccles JC, McGeer EG (1978) Molecular neurobiology of the mammalian brain. Plenum, New York

    Google Scholar 

  • McGillis JP, Organist ML, Payan DG (1987) Substance P and immunoregulation. Fed Proc 46:196–199

    PubMed  CAS  Google Scholar 

  • Melander T, Stainers WA, Hökfelt T, Rokaeus A, Eckenstein F, Salvaterra PM, Wainer BH (1985) Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res 360:130–138

    PubMed  CAS  Google Scholar 

  • Melander T, Staines WM, Rokaeus A (1986) Galanin-like immunoreactivity in hippocampal afferents in the rat, with special reference to cholinergic and noradrenergic inputs. Neuroscience 19:223–240

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  • Meunier FM, Israël M, Lesbats B (1975) Release of ATP from stimulated nerve electroplaque junctions. Nature 257:407–408

    PubMed  CAS  Google Scholar 

  • Michaelson DM (1978) Is presynaptic acetylcholine release accompanied by secretion of the synaptic vesicle contents? FEBS Lett 89:51–53

    PubMed  CAS  Google Scholar 

  • Michaelson DM, Wien-Naor D (1987) Enkephalin uptake into synaptic cholinergic vesicles and nerve terminals. Ann NY Acad Sci (in press)

    Google Scholar 

  • Michaelson DM, McDowall G, Same Y (1984 a) The Torpedo electric organ is a model for opiate regulation of acetylcholine release. Brain Res 305:173–176

    PubMed  CAS  Google Scholar 

  • Michaelson DM, McDowall G, Same Y (1984b) Opiates inhibit acetylcholine release from Torpedo nerve terminals by blocking Ca2+ influx. J Neurochem 43:614–618

    PubMed  CAS  Google Scholar 

  • Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235:46–52

    PubMed  CAS  Google Scholar 

  • Morel N, Meunier FM (1981) Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes. J Neurochem 36:1766–1773

    PubMed  CAS  Google Scholar 

  • Mutt V (1982) Gastrointestinal hormones: a field of increasing complexity. The Brohee Lecture 1982. Scand J Gastroenterol [Suppl] 77:133–152

    CAS  Google Scholar 

  • Mutt V (1983) New approaches to the identification and isolation of hormonal polypeptides. TINS 6:357–360

    CAS  Google Scholar 

  • Nagy A, Baker RR, Morris SJ, Whittaker VP (1976) The preparation and characterization of synaptic vesicles of high purity. Brain Res 109:285–309

    PubMed  CAS  Google Scholar 

  • Nagy A, Varady G, Joó F, Rakonczay Z, Pilz A (1977) Separation of acetylcholine and catecholamine containing synaptic vesicles from brain cortex. J Neurochem 29:449–459

    PubMed  CAS  Google Scholar 

  • O’Dorisio SM (1987) Biochemical characteristics of receptors for vasoactive intestinal polypeptide in nervous, endocrine and immune systems. Fed Proc 46:192–195

    PubMed  Google Scholar 

  • Ohsawa K, Dowe GHC, Morris SJ, Whittaker VP (1979) The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure. Brain Res 161:447–457

    PubMed  CAS  Google Scholar 

  • Palkovits M (1984) Distribution of neuropeptides in the central nervous system: a review of biochemical mapping studies. Prog Neurobiol 23:151–189

    PubMed  CAS  Google Scholar 

  • Patterson PH (1978) Environmental determination of autonomic neurotransmitter functions. Annu Rev Neurosci 1:1–17

    PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–239

    PubMed  CAS  Google Scholar 

  • Phillis JW, Kostopoulos GK, Limacher JJ (1975) A potent depressant action of adenine derivatives on cerebral neurons. Eur J Pharmacol 52:1226–1229

    Google Scholar 

  • Phillis JW, Kirpatrick JR, Said SI (1978) Vasoactive intestinal polypeptide excitation of central neurons. Can J Physiol Pharmacol 56:337–340

    PubMed  CAS  Google Scholar 

  • Pickering BT (1978) The neurosecretory neurone: a model system for the study of secretion. In: Campbell PN, Aldridge WN (eds) Essays in biochemistry, vol 14. Academic, London, pp 45–81

    Google Scholar 

  • Potter DD, Matsumoto SG, Landis SC, Sah DWY, Furshpan EJ (1986) Transmitter status in cultured sympathetic principal neurons: plasticity, graded expression and diversity. Prog Brain Res 68:103–121

    PubMed  CAS  Google Scholar 

  • Priestly JV, Cuello AC (1982) Coexistence of neuroactive substances as revealed by immunohistochemistry with monoclonal antibodies. In: Cuello AC (ed) Co-transmission. Macmillan, London, pp 165–189

    Google Scholar 

  • Reichardt LF, Kelly RB (1983) A molecular description of nerve terminal function. Annu Rev Biochem 52:871–926

    PubMed  CAS  Google Scholar 

  • Riberio JA (1979) Purinergic modulation of transmitter release. J Theor Biol 80:259–270

    Google Scholar 

  • Riberio JA, Dominguez ML (1978) Mechanism of depression of neuromuscular transmission by ATP and adenosine. J Physiol (Paris) 74:491–496

    Google Scholar 

  • Riberio JA, Sa-Almeida AM, Namorado JM (1979) Adenosine and adenosine triphosphate decrease 45Ca2+ uptake by synaptosomes stimulated by potassium. Biochem Pharmacol 28:1297–1300

    Google Scholar 

  • Richardson PJ (1981) Quantitation of cholinergic synaptosomes from guinea pig brain. J Neurochem 37:258–260

    PubMed  CAS  Google Scholar 

  • Richardson PJ, Brown SJ (1987 a) Adenosine and ATP at the cholinergic nerve terminal. In: Dowdall MJ, Hawthorne JH (eds) Cellular and molecular biology of cholinergic function. Horwood, Chichester, pp 436–443

    Google Scholar 

  • Richardson PJ, Brown SJ (1987 b) ATP release from affinity purified rat cholinergic nerve terminals. J Neurochem 48:622–630

    PubMed  CAS  Google Scholar 

  • Richardson PJ, Siddle K, Luzio JP (1984) Immunoaffinity purification of intact, metabolically active, cholinergic nerve terminals from mammalian brain. Biochem J 219:647–654

    PubMed  CAS  Google Scholar 

  • Rokaeus A, Melander T, Hökfelt T, Lundberg JM, Tatemoto K, Carlquist M, Mutt V (1984) A galanine-like peptide in the central nervous system and intestine of the rat. Neurosci Lett 47:161–166

    PubMed  CAS  Google Scholar 

  • Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RE (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135

    PubMed  CAS  Google Scholar 

  • Sawynok J, Jahmadas KH (1976) Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides and morphine: antagonism by theophylline. J Pharmacol Exp Ther 197:379–390

    PubMed  CAS  Google Scholar 

  • Scharrer B (1987) Neurosecretion: beginnings and new directions in neuropeptide research. Annu Rev Neurosci 10:1–17

    PubMed  CAS  Google Scholar 

  • Scharrer E, Scharrer B (1940) Secretory cells within the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 20:170–194

    Google Scholar 

  • Schmidt R (1978) Sequential release of ATP and ACh from cholinergic synaptic vesicles modulated by Ca2+ and synaptic membranes in vitro. Hoppe Seylers Z Physiol Chem 359:316

    Google Scholar 

  • Schmitt FO (1983) Molecular regulators of brain function: a new view. Neuroscience 13:991–1001

    Google Scholar 

  • Schubert P, Mitzdorf U (1979) Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices. Brain Res 172:186–190

    PubMed  CAS  Google Scholar 

  • Schubert P, Lee KS, Tetzlaff W, Kreutzberg GW (1985) Postsynaptic modulation of neuronal firing pattern by adenosine. In: Changeux J-P, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, pp 283–292

    Google Scholar 

  • Schultzberg M (1984) Overviews of colocalization of peptides in the peripheral nervous system. In: Chan-Palay V, Palay SL (eds) Coexistence of neuroactive substances in neurons. Wiley and Sons, New York, pp 225–244

    Google Scholar 

  • Schultzberg M, Hökfelt T (1986) The mismatch problem in receptor autoradiography and the coexistence of multiply messengers. TINS 9:109–110

    Google Scholar 

  • Schwanzel-Fukuda M, Morrel JI, Pfaff DW (1986) Localization of choline acetyltransferase and vasoactive intestinal polypeptide-like immunoreactivity in the nervus terminalis of the fetal and neonatal rat. Peptides 7:899–906

    PubMed  CAS  Google Scholar 

  • Silinsky EM (1975) On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J Physiol (Lond) 247:145–162

    CAS  Google Scholar 

  • Silinsky EM (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol (Lond) 346:243–256

    CAS  Google Scholar 

  • Sjöquist F (1963) Pharmacological analysis of acetylcholinesterase-rich ganglion cells in the lumbosacral sympathetic system of the cat. Acta Physiol Scand 57:352–362

    Google Scholar 

  • Snyder SH (1980) Brain peptides as neurotransmitters. Science 209:976–983

    PubMed  CAS  Google Scholar 

  • Speidel CC (1919) Gland-cells of internal secretion in the spinal cord of the skates. Carnegie Inst Washington Publ 13:1–31

    Google Scholar 

  • Stadler H, Fenwick E (1983) Cholinergic synaptic vesicles from Torpedo marmorata contain an atractyloside binding protein related to the mitochondrial ADP ATP carrier. Eur J Biochem 136:377–382

    PubMed  CAS  Google Scholar 

  • Stadler H, Füldner HH (1980) Proton NMR detection of acetylcholine status in synaptic vesicles. Nature 286:293–294

    PubMed  CAS  Google Scholar 

  • Stanley KK, Burke P, Pitt P, Siddle K, Luzio JP (1983) Localization of 5´nucleotidase in a rat liver cell line using a monoclonal antibody and indirect immunofluorescent labelling. Exp Cell Res 144:39–46

    PubMed  CAS  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77:1–124

    PubMed  CAS  Google Scholar 

  • Stjärne L, Astrand P (1984) Discrete events measure single quanta of 5´-triphosphatase secreted from sympathetic nerves of guinea pig and mouse vas deferens. Neuroscience 13:21–28

    PubMed  Google Scholar 

  • Stjärne L, Hedquist R, Labercrantz H (1970) Catecholamines and adenine nucleotide material in effluent from stimulated adrenal medulla and spleen: a study of the exocytosis hypothesis for hormone secretion and neurotransmitter release. Biochem Pharmacol 19:1147–1158

    Google Scholar 

  • Stone TW (1981) Physiological role for adenosine and adenosine 5´-triphosphate in the nervous system. Neuroscience 6:523–555

    PubMed  CAS  Google Scholar 

  • Takami K, Kawai Y, Shiosaka S, Lee Y, Girgis S, Hillyard CJ, Macintyre I, Emson PC, Tohyama M (1985) Immunohistochemical evidence for the coexistence of calcitonin gene-related peptide and choline acetyltransferase-like immunoreactivity in neurons of the rat hypoglossal, facial and ambiguus nuclei. Brain Res 328:386–389

    PubMed  CAS  Google Scholar 

  • Tatemoko K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V (1983) Galanin — a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    Google Scholar 

  • Turner AJ (1986) Processing and metabolism of neuropeptides. Essays Biochem 22:69–119

    PubMed  CAS  Google Scholar 

  • Turner AJ, Dowdall MJ (1984) The metabolism of neuropeptides. Both phosphoramidon-sensitive and Captopril-sensitive metallopeptidases are present in the electric organ of Torpedo marmorata. Biochem J 222:255–259

    PubMed  CAS  Google Scholar 

  • Turner AJ, Hryszko J, Hooper NM, Dowdall MJ (1987) Purification and characterization of peptidyl dipeptidase resembling angiotensin converting enzyme from electric organ of Torpedo marmorata. J Neurochem 48:910–916

    PubMed  CAS  Google Scholar 

  • Uddman R (1980) Vasoactive intestinal polypeptide: distribution and possible role in the upper respiratory and digestive region. MD thesis, University of Lund

    Google Scholar 

  • Vilmart-Seuwen J, Kersken H, Strutzl R, Plattner H (1986) ATP keeps exocytotic sites in a primed state but is not required for membrane fusion: an analysis with Paramecium cells in vivo and in vitro. J Cell Biol 103:1279–1288

    PubMed  CAS  Google Scholar 

  • Vincent SR, Satoh K, Armstrong DM, Fibiger HC (1983) Substance P in the ascending cholinergic reticular system. Nature 306:688–691

    PubMed  CAS  Google Scholar 

  • Vizi ES, Knoll J (1976) The inhibitory effect of adenosine and related nucleotides on the release of acetylcholine. Neuroscience 1:391–398

    PubMed  CAS  Google Scholar 

  • Volknandt W, Zimmermann H (1986) Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem 47:1449–1462

    PubMed  CAS  Google Scholar 

  • Von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol (Lond) 72:74–87

    Google Scholar 

  • Wakelam MJO, Davies SA, Houslay MD, McKay I, Marshall CJ, Hall A (1986) Normal p21 N-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature 323:173–176

    PubMed  CAS  Google Scholar 

  • White JD, Stewart KM, Krause JE, McKelvy JF (1985) Biochemistry of peptide-secreting neurons. Physiol Rev 65:553–606

    PubMed  CAS  Google Scholar 

  • White T, Potter P, Wonnacott S (1980) Depolarization-induced release of ATP from cortical synaptosomes is not associated with acetylcholine release. J Neurochem 34:1109–1112

    PubMed  CAS  Google Scholar 

  • Whittaker VP (1979) Re: metabotropic neurotransmission. Trends Neurosci 2:VII

    Google Scholar 

  • Whittaker VP (1984 a) The structure and function of cholinergic synaptic vesicles. The 3rd Thiudicum lecture. Biochem Soc Trans 12:561–576

    PubMed  CAS  Google Scholar 

  • Whittaker VP (1984b) The synaptic vesicle. In: Lajtha A (ed) Handbook of neurochemistry, vol 7. Plenum, New York, pp 41–69

    Google Scholar 

  • Whittaker VP, Agoston DV (1986) Association of neuropeptides and acetylcholine in guinea pig myenteric plexus and electromotor neurons of Torpedo investigated biochemically and histologically. In: Scharrer B, Korf HW, Hartwig HG (eds) Functional morphology of neuroendocrine systems: evolutionary and environmental aspects, pp 9–21

    Google Scholar 

  • Wiedemann B, Franke WW (1985) Identification and localization of an integral membrane glycoprotein of M1 38000 (synaptophysin) characteristic of presynaptic vesicles. Cell 41:1017–1028

    Google Scholar 

  • Winkler H (1976) The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1:65–80

    PubMed  CAS  Google Scholar 

  • Winkler H (1977) The biogenesis of adrenal chromaffin granules. Neuroscience 2:657–683

    PubMed  CAS  Google Scholar 

  • Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1827

    PubMed  CAS  Google Scholar 

  • Winkler H, Schmidt W, Fischer-Colbrie R, Weber A (1983) Molecular mechanisms of neurotransmitter storage and release: a comparison of the adrenergic and cholinergic systems. Prog Brain Res 58:11–21

    PubMed  CAS  Google Scholar 

  • Witzemann V (1987) Photoaffinity labelling of the adenosine nucleotide transporter of cholinergic vesicles. J Pharmacol Exp Ther 33:287–302

    CAS  Google Scholar 

  • Zhu PC, Thureson-Klein A, Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 19:43–54

    PubMed  CAS  Google Scholar 

  • Zimmermann H (1978) Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ. Neuroscience 3:827–836

    PubMed  CAS  Google Scholar 

  • Zimmermann H (1979) Vesicular heterogeneity and turnover of acetylcholine and ATP in cholinergic synaptic vesicles. Prog Brain Res 49:141–151

    PubMed  CAS  Google Scholar 

  • Zimmermann H (1982) Coexistence of adenosine 5´-triphosphate and acetylcholine in the electromotor synapse. In: Cuello AA (ed) Co-transmission. Macmillan, London, pp 243–259

    Google Scholar 

  • Zimmermann H, Bokor JT (1979) ATP recycles independently of ACh in cholinergic synaptic vesicles. Neurosci Lett 13:319–324

    PubMed  CAS  Google Scholar 

  • Zimmermann H, Denston CR (1977 a) Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neuroscience 2:695–714

    Google Scholar 

  • Zimmermann H, Denston CR (1977 b) Separation of synaptic vesicles of different functional states from the cholinergic synapses of the Torpedo electric organ. Neuroscience 2:715–730

    PubMed  CAS  Google Scholar 

  • Zimmermann H, Grondall EJM (1985) Adenosine-5´-triphosphate at the cholinergic synapse: a co-transmitter? In: Changeux JP, Hucho F, Maelicke A, Neumann E (eds) Molecular basis of nerve activity. de Gruyter, Berlin, pp 91–105

    Google Scholar 

  • Zimmermann H, Dowdall MJ, Lane DA (1979) Purine salvage at the cholinergic nerve endings of the Torpedo electric organ: the central role of adenosine. Neuroscience 4:979–993

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agoston, D.V. (1988). Cholinergic Co-transmitters. In: Whittaker, V.P. (eds) The Cholinergic Synapse. Handbook of Experimental Pharmacology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73220-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73220-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73222-5

  • Online ISBN: 978-3-642-73220-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics