Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 10))

Abstract

The binary collision approximation is the basis of a large number of computer simulation programs. These programs treat the movement of an atom in a solid as a series of successive binary collisions. The single binary collision will be the subject of this chapter. The terms atom, particle or projectile may be used independently of the charge state of an atom. Binary collisions between atoms have been studied in the past in the field of atomic collisions in the gas phase and, for example, in the game of billiards, but there are several details that cannot be found in textbooks such as [2.1,2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Goldstein: Classical Mechanics, 2nd ed. ( Addison-Wesley, Reading, Mass. 1980 ) Chap. 3

    MATH  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz: Mechanics, Vol.1 of Course of Theoretical Physics, 2nd ed. ( Pergamon, Oxford 1969 ) Chap. I V

    Google Scholar 

  3. W. Eckstein, R. Bastasz: Nucl Instrum. Methods 29, 603 (1988)

    Article  Google Scholar 

  4. M. Gryzinski: Phys. Rev. 138, A305 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  5. R.K.B. Helbing: J. Chem. Phys. 48, 472 (1968)

    Article  ADS  Google Scholar 

  6. G. Leibfried: Bestrahlungseffekte in Festkörpern ( Teubner, Stuttgart 1965 )

    MATH  Google Scholar 

  7. C. Lehmann: Interaction of Radiation with Solids and Elementary Defect Production ( North-Holland, Amsterdam 1965 )

    Google Scholar 

  8. M.T. Robinson, I.M. Torrens: Phys. Rev. B 9, 5008 (1974)

    Article  ADS  Google Scholar 

  9. M.T. Robinson: “Tables of Classical Scattering Integrals”; U.S. Atomic Energy Commission, ORNL–4556 (1970)

    Google Scholar 

  10. Z. Kopal: Numerical Analysis (Chapman and Hall, London 1961) pp. 367 ff

    Google Scholar 

  11. PJ. Davis, I. Polansky: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Stegun (Dover, New York 1965) Chap. 25, p. 887

    Google Scholar 

  12. K. Mehler: J. Reine Angew. Math. 63, 152 (1864)

    Article  MATH  Google Scholar 

  13. PJ. Davis, I. Polansky: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Stegun (Dover, New York 1965) Chap. 25, p. 889

    Google Scholar 

  14. FJ. Smith: Physica 30, 497 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Abramovitz: In Handbook of Mathematical Functions, ed. by M. Abramowitz, I.A. Stegun (Dover, New York 1965) Chap. 3, p. 18

    Google Scholar 

  16. J.P. Biersack, L.G. Haggmark: Nucl. Instrum. Methods 174, 257 (1980)

    Article  ADS  Google Scholar 

  17. O.B. Firsov: Zh. Eksp. Teor. Fiz. 33, 696 (1957) [Sov. Phys.-JETP 6, 534 (1958)]

    Google Scholar 

  18. J.P. Biersack, W. Krüger, R.L. Stuller: Radiat. Eff. Lett. 85, 193 (1985)

    Article  Google Scholar 

  19. J. Sielanko: Radiat. Eff. Lett. 86, 185 (1984)

    Article  Google Scholar 

  20. W. Krüger: Radiat. Eff. Lett. 87, 51 (1985)

    Article  Google Scholar 

  21. V.M. Konoplev: Radiat. Eff. Lett. 87, 207 (1986)

    Article  Google Scholar 

  22. H.G. Schlager, W. Eckstein: IPP-Report 9 /69, (1989)

    Google Scholar 

  23. M.T. Robinson: In Sputtering by Particle Bombardment /, ed. by R. Behrisch, Topics Appl. Phys., Vol. 47 ( Springer, Berlin, Heidelberg 1981 ) p. 73

    Google Scholar 

  24. W.L. Gay, D.E. Harrison, Jr.: Phys. Rev. 135, A1780 (1964)

    Article  ADS  Google Scholar 

  25. V.E. Yurasova: In Physics of Ionized Gases, ed. by V. Vujnovic ( Institute of Phys., University of Zagreb, Yugoslavia 1974 ) p. 427

    Google Scholar 

  26. C. Erginsoy, G.H. Vineyard, A. Shimizu: Phys. Rev. 139, A118 (1965)

    Article  ADS  Google Scholar 

  27. D.M. Schwartz, J.O. Schiffgens, D.G. Doran, G.R. Odette, R.G. Ariyasu: In Computer Simu-lation for Materials Applications, ed. by R J. Arsenault, J.R. Beeler, Jr., J.A.Simmons (NBS, Washington, DC 1976) p. 75. See also Nucl. Metall. 20, 75 (1976)

    Google Scholar 

  28. H.L. Heinisch, J.O. Schiffgens, D.M. Schwartz: J. Nucl. Mater. 85 /86, 607 (1979)

    Article  ADS  Google Scholar 

  29. J.O. Schiffgens, K.E. Garrison: J. Appi. Phys. 43, 3240 (1972)

    Article  ADS  Google Scholar 

  30. M.M. Jakas, D.E. Harrison, Jr.: Nucl. Instrum. Methods B 14, 535 (1986)

    Article  ADS  Google Scholar 

  31. D.E. Harrison, Jr., M.M. Jakas: Radiat. Eff. 99, 153 (1986)

    Article  Google Scholar 

  32. J.P. Biersack, W. Eckstein: Appi. Phys. A 34, 73 (1984)

    Article  ADS  Google Scholar 

  33. N. Bohr: Mat.-Phys. K. Dan. Vidensk. Selsk. 18, No. 8 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eckstein, W. (1991). The Binary Collision Model. In: Computer Simulation of Ion-Solid Interactions. Springer Series in Materials Science, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73513-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73513-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73515-8

  • Online ISBN: 978-3-642-73513-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics