Skip to main content

X-Ray Microanalysis of Cryosections Using Image Analysis

  • Conference paper
Electron Probe Microanalysis

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 4))

  • 133 Accesses

Abstract

It is possible for electron probe x-ray microanalysis to be used to generate quantitative digital images of elemental distribution in cryosections of biological specimens (Gorlen et al. 1984, Ingram et al. 1987, Saubermann and Heyman 1987, Fiori et al. 1988, Johnson et al. 1988). By combining low temperature specimen preparation methods with computerized electron beam placement, an elemental map can be produced which gives information in a readily interpretable and understandable manner. By using well established electron probe x-ray analytical algorithms for quantitation of x-ray signals obtained through energy dispersive systems, each pixel can yield valuable quantitative information. When many pixels are combined, the statistical power of this form of analysis can be appreciated. However, and perhaps even more importantly, when grey level values are assigned to a range of pixel values in forming a map, it is possible for the eye and brain to do the statistical processing in an intuitive fashion. Since information on several elements can be acquired simultaneously, it is also possible to superimpose, and, thereby, relate elemental concentrations to each other as well as to anatomic structure. When quantitated, elemental mass is related to wet weight mass, as well as to dry weight mass. By using frozen hydrated cryosectioning techniques and analysis methods, special elemental relationships often become apparent (Saubermann and Stockton 1988, Saubermann and Heyman 1987). However, direct x-ray imaging of frozen hydrated tissue sections presents a formidable list of problems. Among these problems are 1) low peak to background ratios of biological elements normally found in small wet weight concentrations; 2) indistinguishable morphology due to the lack of contrast making it very difficult, if not impossible, to identify an area to be mapped; and 3) a specimen which is highly radiation sensitive such that water loss occurs at probe currents necessary to permit statistically acceptable x-ray generation rates. The methods which we have developed, use an algorithm which basically circumvents these major problems. Because changes in dry weight mass fraction of elements may not reflect changes in wet weight mas fractions (since cell water content can change for various physiological and pathological reasons), it may be important to determine and appreciate both wet weight and dry weight mass fractions in a biological specimen (Saubermann and Stockton, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Fiori C, Leapman R, Swyt C, Andrews B (1988) Quantitative x-ray mapping of biological cryosections. Ultramicroscopy 24:237–250.

    Google Scholar 

  • Gorlen K, Barden L, Del Priore J, Fiori C, Gibson C, Leapman R (1984) Computerized analytical electron microscope for elemental imaging. Rev. Sci. Iustrum. 55:912–921.

    Article  CAS  Google Scholar 

  • Hall T, Anderson H, Appleton T (1973) The use of thin specimens for x-ray microanalysis in biology. J. Microscop. 99:177–182.

    Article  Google Scholar 

  • Hall T, Gupta B (1982) Quantification for the x-ray microanalysis of cryosections. J. Microscop. 126:333–345.

    Article  CAS  Google Scholar 

  • Ingram F, Ingram M (1984) Influences of freeze-drying and plastic-embedding on electrolyte distributions. In: The Science of Biological Specimen Preparation. J. P. Revel, T. Barnard, & B. Haggis, eds. SEM Inc., AMF O’Hare, Il. pp 167–174.

    Google Scholar 

  • Ingram P, LeFurgey A, Davilla S, Lamvik M, Kopf D, Mandel L, Lieberman M (1987) Real-time quantitative elemental analysis and imaging in cells. Analytical Electron Microscopy-1987. D. Joy, ed. San Francisco Press. S.F. Calif. Proceedings MAS meeting. pp 179–183.

    Google Scholar 

  • Johnson D, Izutsu K, Cantino M, Wong J (1988) High spatial resolution spectroscopy in the elemental microanalyis and imaging of biological systems. Ultramicroscopy 24:221–236.

    Article  PubMed  CAS  Google Scholar 

  • LoPachin R, Lowery J, Eichberg J, Kirkpatrick J, Cartwright J, Saubermann A (1988) Distribution of elements in rat peripheral axons and nerve cell bodies determined by x-ray microprobe analysis. J. Neurochem. 51:764–775.

    Article  PubMed  CAS  Google Scholar 

  • Saubermann A, Beeuwkes R, Peters P (1981) Application of scanning electtron microscopy to x-ray analysis of frozen-hydrated sections. II. Analysis of standard solutions and artificial electrolyte gradients. J. Cell Biol. 88:269–273.

    Google Scholar 

  • Saubermann A, Echlin P, Peters P, Beeuwkes R (1981) Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. I. Specimen handling techniques. J. Cell Biol. 88:257–267.

    Article  PubMed  CAS  Google Scholar 

  • Saubermann A, Heyman R (1987) Quantitative digital x-ray imaging using frozen hydrated and frozen dried tissue sections. J. Microscop. 146: 162–182.

    Article  Google Scholar 

  • Saubermann A, Scheid V (1985) Elemental composition and water content of neuron and glial cells in the central nervous system of the North American medicinal leech (Macrobdella decora). J. Neurochem. 44:825–834.

    Article  PubMed  CAS  Google Scholar 

  • Saubermann A, Stockton. J (1988) Effects of increased extracellular K In the elemental composition and water content of neuron and glial cells in leech central nervous system. J. Neurochem 51:1797–1807.

    Article  PubMed  CAS  Google Scholar 

  • Statham P (1987): Quantitative digital mapping with drift compensation. Analytical Electron Microscopy-1987. D. Joy ed. San Francisco Press, S.F. Calif Proceedings MAS Meeting. pp 187–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saubermann, A.J. (1989). X-Ray Microanalysis of Cryosections Using Image Analysis. In: Zierold, K., Hagler, H.K. (eds) Electron Probe Microanalysis. Springer Series in Biophysics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74477-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74477-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74479-2

  • Online ISBN: 978-3-642-74477-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics