Skip to main content

Transport in Plasma Membrane Vesicles — Approaches and Perspectives

  • Chapter
The Plant Plasma Membrane
  • 214 Accesses

Abstract

Preparations of isolated vesicles represent an ideal system for the study of transport processes associated with native membranes. With this approach, it is possible to characterize single transport systems without the complications associated with examining transport in the intact cell. Since the vesicles are not associated with the metabolic machinery of the cell, solute transport can be studied in the absence of metabolic transformation or compartmentation and the energy supply to drive transport (e.g., ATP) can be added exogenously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BTP:

bis-tris propane

CCCP:

carbonylcyanide m-chlorophenylhydrazone

DES:

diethylstilbestrol

DCCD:

N,N′-dicyclohexylcarbodiimide

EPR:

electron paramagnetic resonance

PMSF:

phenylmethylsulfonyl fluoride

References

  • Bennett AB, Spanswick RM (1983) Optical measurement of ΔpH and ΔΨ in corn root membrane vesicles: kinetic analysis of Ch effects on a proton translocating ATPase. J Membr Biol 71: 95–107

    Article  CAS  Google Scholar 

  • Bennett AB, O’Neill SD, Spanswick RM (1984) H+-ATPase from storage tissue of Beta vulgaris I. Identification and characterization of an anion sensitive H+-ATPase. Plant Physiol 74: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E (1987) Tonoplast vesicles as a tool in the study of ion transport at the plant vacuole. Physiol Plant 69: 731–734

    Article  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1985a) Nitrate storage and retrieval in Beta vulgaris L.: effects of nitrate and chloride on proton gradients in tonoplast vesicles. Proc Natl Acad Sci USA 83: 3683–3687

    Article  Google Scholar 

  • Blumwald E, Poole RJ (1985b) Na+ /H+ antiport in isolated tonoplast vesicles from storage tissues of Beta vulgaris. Plant Physiol 78: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Poole RJ (1986) Kinetics of Ca2+ /H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris L. Plant Physiol 80: 727–731

    Article  PubMed  CAS  Google Scholar 

  • Briars SA, Kessler F, Evans DE (1989) The calmodulin-stimulated ATPase of maize coleoptiles is a 140,000 Mr polypeptide. Planta 176: 283–285

    Article  Google Scholar 

  • Briskin DP (1987) Plasma membrane H+-transporting ATPase: role in potassium ion transport? Physiol Plant 68: 159–163

    Article  Google Scholar 

  • Briskin DP, Poole RJ (1983) Characterization of a K+-stimulated adenosine triphosphatase associated with the plasma membrane of red beet. Plant Physiol 71: 350–355

    Article  PubMed  CAS  Google Scholar 

  • Briskin DP, Thornley WR, Wyse RE (1985) Membrane transport in isolated vesicles from sugarbeet taproot. II. Evidence for a sucrose/H+-antiport. Plant Physiol 78: 871–875

    Article  PubMed  CAS  Google Scholar 

  • Briskin DP, Leonard RT, Hodges TK (1987) Isolation of plasma membrane: membrane markers and general principles. Methods Enzymol 148: 542–558

    Article  CAS  Google Scholar 

  • Buckhout TJ (1983) ATP-dependent Ca2+ -transport in endoplasmic reticulum isolated from roots of Lepidium sativum L. Planta 159: 84–90

    Article  CAS  Google Scholar 

  • Buckhout TJ (1984) Characterization of Ca2+-transport in purified endoplasmic reticulum membranes from Lepidium sativum L. roots. Plant Physiol 76: 962–967

    Article  PubMed  CAS  Google Scholar 

  • Bush DR, Langston-Unkefer PJ (1988) Amino acid transport into membrane vesicles isolated from zucchini: evidence for a H+/amino acid symport in the plasmalemma. Plant Physiol 88: 487–490

    Article  PubMed  CAS  Google Scholar 

  • Bush DR, Sze H (1986) Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. Plant Physiol 80: 549–555

    Article  PubMed  CAS  Google Scholar 

  • Canut H, Brightman AO, Boudet AM, Morre DJ (1987) Determination of sidedness of plasma membrane and tonoplast vesicles isolated from plant stems. In: Leaver C, Sze H (eds) Plant membranes: structure, function and biogenesis. Alan R Liss, pp 141–159

    Google Scholar 

  • Churchill KA, Sze H (1983) Anion sensitive, H+-pumping ATPase in membrane vesicles from oat roots. Plant Physiol 71: 610–617

    Article  PubMed  CAS  Google Scholar 

  • Churchill KA, Holloway B, Sze H (1983) Separation of two types of electrogenic H+-pumping ATPases from oat roots. Plant Physiol 73: 921–928

    Article  PubMed  CAS  Google Scholar 

  • Deamer DW, Prince RC, Crofts AR (1972) The response of fluorescent amines to pH gradients across liposome membranes. Biochim Biophys Acta 274: 323–335

    Article  PubMed  CAS  Google Scholar 

  • De Michelis MI, Spanswick RM (1986) H+-pumping driven by the vanadate-ATPase in membrane vesicles from corn roots. Plant Physiol 81: 542–547

    Article  PubMed  Google Scholar 

  • Dieter P, Marme D (1980) Calmodulin activation of plant microsomal Ca2+ uptake. Proc Natl Acad Sci USA 77: 7311–7314

    Article  PubMed  CAS  Google Scholar 

  • Dieter P, Marme D (1981) A calmodulin-dependent, microsomal ATPase from corn (Zea mays L.). FEBS Lett 125: 245–248

    Article  CAS  Google Scholar 

  • Dupont FM, Bennett AB, Spanswick RM (1982) Localization of a proton-translocating ATPase on sucrose gradients. Plant Physiol 70: 1115–1119

    Article  PubMed  CAS  Google Scholar 

  • Dupont FM, Tanaka CK, Hurkman WJ (1988) Separation and immunological characterization of membrane fractions from barley roots. Plant Physiol 86: 717–724

    Article  PubMed  CAS  Google Scholar 

  • Federico R, Giartosio CE (1983) A trans-plasma membrane electron transport system in maize roots. Plant Physiol 73: 182–184

    Article  PubMed  CAS  Google Scholar 

  • Furst P, Solioz M (1986) The vanadate-sensitive ATPase of Streptococcus faecalis pumps potassium in a reconstituted system. J Biol Chem 261: 4302–4308

    PubMed  CAS  Google Scholar 

  • Giannini JL, Briskin DP (1987) Proton transport in plasma membrane and tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue. A comparative study of ion effects on ΔpH and ΔΨ. Plant Physiol 84: 613–618

    Article  PubMed  CAS  Google Scholar 

  • Giannini JL, Briskin DP (1988) Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue. Arch Biochem Biophys 260: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Giannini JL, Gildensoph LH, Briskin DP (1987a) Selective production of sealed plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue. Arch Biochem Biophys 254: 621–630

    Article  PubMed  CAS  Google Scholar 

  • Giannini JL, Gildensoph LH, Ruiz-Cristin J, Briskin DP (1987b) Isolation and characterization of sealed plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue. Plant Physiol Suppl 83: 55

    Google Scholar 

  • Giannini JL, Gildensoph LH, Reynolds-Niesman I, Briskin DP (1988a) Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue. I. Characterization of a Ca2+-pumping ATPase associated with the endoplasmic reticulum. Plant Physiol 85: 1129–1136

    Article  Google Scholar 

  • Giannini JL, Ruiz-Cristin J, Briskin DP (1988b) Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue. II. Characterization of 45Ca2+ uptake into plasma membrane vesicles. Plant Physiol 85: 1137–1142

    Article  Google Scholar 

  • Giannini JL, Holt JS, Briskin DP (1988c) Isolation of sealed plasma membrane vesicles from Phytophthora megasperma f. sp. glycinea. I. Characterization of proton pumping and ATPase activity. Arch Biochem Biophys 265: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Gunn RB (1980) Co- and counter transport mechanisms in cell membranes. Annu Rev Physiol 42: 249–259

    Article  PubMed  CAS  Google Scholar 

  • Hager A, Helme M (1981) Properties of an ATP fueled, CI-dependent proton pump localized in membranes of microsomal vesicles from maize coleoptiles. Z Naturforsch 36c: 927–937

    Google Scholar 

  • Hager A, Frenzel R, Laible D (1980) ATP-dependent proton transport into vesicles of microsomal membranes of Zea mays coleoptiles. Z Naturforsch 35c: 783–793

    CAS  Google Scholar 

  • Hepler PK, Wayne RO (1986) Calcium and plant development. Annu Rev Plant Physiol 36: 397–439

    Article  Google Scholar 

  • Itano T, Penniston JT (1985) Ca2+-pumping ATPase of plasma membranes. In: Cheung A (ed) Calmodulin antagonists and cellular physiology. Academic Press, New York, pp 335–345

    Google Scholar 

  • Kaback HR (1974a) Transport in isolated bacterial vesicles. Methods Enzymol 31: 698–709

    Article  PubMed  CAS  Google Scholar 

  • Kaback HR (1974b) Transport studies in bacterial membrane vesicles. Science 186: 882–892

    Article  PubMed  CAS  Google Scholar 

  • Kaback HR (1983) The lac carrier protein in Escherichia coli. J Membr Biol 76: 95–112

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Kjellbom P, Widell S, Lundborg T (1984) Sidedness of plant plasma membrane vesicles purified by partitioning in aqueous two-phase systems. FEBS Lett 171: 271–276

    Article  CAS  Google Scholar 

  • Larsson C, Widell S, Kjellbom P (1987) Preparation of high-purity plasma membranes. Methods Enzymol 148: 558–568

    Article  CAS  Google Scholar 

  • Larsson C, Widell S, Sommarin M (1988) Inside-out plant plasma membrane vesicles of high purity obtained by aqueous two-phase partitioning. FEBS Lett 229: 289–292

    Article  CAS  Google Scholar 

  • Lee HC, Forte JG (1978) A study of H+ transport in gastric microsomal vesicles using fluorescent probes. Biochim Biophys Acta 508: 339–359

    Article  PubMed  CAS  Google Scholar 

  • Leonard RT (1984) Membrane associated ATPases and nutrient absorption by roots. In: Tinker PB, Lauchli A (eds) Advances in plant nutrition, Vol I. Praeger Scientific, New York, pp 209–240

    Google Scholar 

  • Lew RR, Spanswick RM (1984) Proton-pumping activities of soybean (Glycine max L.) root microsomes: localization and sensitivity to nitrate and vanadate. Plant Sci Lett 36: 187–193

    Article  CAS  Google Scholar 

  • Lew RR, Bushunow N, Spanswick RM (1985) ATP-dependent proton-pumping activities of zucchini fruit microsomes. A study of tonoplast and plasma membrane activities. Biochim Biophys Acta 821: 341–347

    Article  CAS  Google Scholar 

  • Marre MT, Moroni A, Albergoni FG, Marre E (1988) Plasmalemma redox activity and H+ extrusion. I. Activation of the H+-pump by ferricyanide-induced potential depolarization and cytoplasm acidification. Plant Physiol 87: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Melhorn RJ, Packer L (1984) Bioenergetic studies of cells with spin probes. Ann NY Acad Sci 414: 180–189

    Article  Google Scholar 

  • Melhorn RJ, Candu P, Packer L (1982) Measurements of volumes and electrochemical gradients with spin probes in membrane vesicles. Method Enzymol 88: 752–761

    Google Scholar 

  • Mercier J, Poole RJ (1980) Electrogenic pump activity in red beet: its relation to ATP levels and cation influx. J Membr Biol 55: 165–174

    Article  CAS  Google Scholar 

  • Mettler I J, Leonard RT (1979) Ion transport in isolated protoplasts from tobacco suspension cells. I. General characteristics. Plant Physiol 63: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PM (1976) Vectorial chemistry and the molecular mechanism of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans 4: 399–430

    PubMed  CAS  Google Scholar 

  • Mitchell PM (1985) The correlation of chemical and osmotic forces in biochemistry. J Biochem 97: 1–18

    PubMed  CAS  Google Scholar 

  • Møller I, Lin W (1986) Membrane-bound NAD(P)H dehydrogenases in higher plant cells. Annu Rev Plant Physiol 37: 309–334

    Article  Google Scholar 

  • Møller IM, Lundborg T, Bérczi A (1984) The negative surface charge density of plasmalemma vesicles from wheat and oat roots. FEBS Lett 167: 181–185

    Article  Google Scholar 

  • O’Neill SD, Spanswick RM (1984) Solubilization and reconstitution of a vanadate-sensitive H+-ATPase from the plasma membrane of Beta vulgaris. J Membr Biol 79: 245–256

    Article  Google Scholar 

  • Perlin DS, Spanswick RM (1982) Isolation and assay of corn root membrane vesicles with reduced proton permeability. Biochim Biophys Acta 690: 178–186

    Article  CAS  Google Scholar 

  • Poole RJ (1982) Electrogenic transport at the plasma membrane of plant cells. In: Martinosi AN (ed) Membranes and transport, vol 2. Plenum Publishing, New York, pp 651–655

    Google Scholar 

  • Poole RJ, Briskin DP, Kratky Z, Johnstone RM (1984) Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet: characterization of proton transport and ATPase in tonoplast vesicles. Plant Physiol 74: 549–556

    Article  PubMed  CAS  Google Scholar 

  • Poole RJ, Melhorn RJ, Packer L (1985) A study of transport in tonoplast vesicles using spin-labelled probes. In: Marin B (ed) Biochemistry and function of vacuolar adenosine triphosphatase in fungi and plants. Springer, Berlin, Heidelberg New York Tokyo, pp 114–118

    Chapter  Google Scholar 

  • Poovaiah BW, Reddy ASN (1987) Calcium messenger system in plants. CRC Crit Rev Plant Sci 6: 47–103

    Article  PubMed  CAS  Google Scholar 

  • Pope A J, Leigh RA (1988) Dissipation of pH gradients in tonoplast vesicles and liposomes by mixtures of acridine orange and anions. Implications of the use of acridine orange as a ΔpH probe. Plant Physiol 86: 1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Ramos S, Kaback HR (1977) The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16: 848–854

    Article  PubMed  CAS  Google Scholar 

  • Rasi-Caldogno F, Pugliarello MC, De Michelis MI (1985) Electrogenic transport of protons driven by the plasma membrane ATPase in membrane vesicles from radish. Biochemical characterization. Plant Physiol 77: 200–205

    Article  PubMed  CAS  Google Scholar 

  • Rea PA, Poole RJ (1985) Proton-translocating inorganic pyrophosphatase in red beet (Beta vulgaris L.) tonoplast vesicles. Plant Physiol 77: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Larsson C, Buckhout TJ (1988) Identification of a calmodulin-stimulated (Ca2+ + Mg2+)-ATPase in a plasma membrane fraction isolated from maize (Zea mays) leaves. Physiol Plant 72: 177–184

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro A, Blatt MR, Slayman CL (1986) A potassium-proton symport in Neurospora crassa. J Gen Physiol 87: 649–674

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein B, Stern AI (1986) Relationship of transplasmalemma redox activity to proton and solute transport by roots of Zea mays. Plant Physiol 80: 805–811

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein B, Stern AI, Stout RG (1984) Redox activity at the surface of oat root cells. Plant Physiol 76: 386–391

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Cristin J, Briskin DP (1988) Nitrate transport in plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue. Plant Physiol Suppl 86: 79

    Google Scholar 

  • Schumaker KS, Sze H (1985) A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+ -ATPase from oat roots. Plant Physiol 79: 1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Sijmons PC, Lanfermeijer FC, De Boer AH, Prins HBA, Bienfait HF (1984) Depolarization of cell membrane potential during trans-plasma membrane electron transfer to extracellular electron acceptors in iron-deficient roots of Phaseolus vulgaris L. Plant Physiol 76: 943–946

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Kesav B VS, Briskin DP (1987) Reconstitution and rapid partial purification of the red beet plasma membrane ATPase. Physiol Plant 69: 617–626

    Article  CAS  Google Scholar 

  • Steck TL (1974) Preparation of impermeable inside-out and right-side-out vesicles from erythrocyte membranes. Methods Membr Biol 2: 245–281

    CAS  Google Scholar 

  • Stein WD (1986) Transport and diffusion across cell membranes. Academic Press, Orlando, FL

    Google Scholar 

  • Sze H (1980) Nigericin-stimulated ATPase activity in microsomal vesicles of tobacco callus. Proc Natl Acad Sci USA 77: 5904–5908

    Article  PubMed  CAS  Google Scholar 

  • Sze H (1982) Characterization of nigericin-stimulated ATPase from sealed vesicles of tobacco callus. Plant Physiol 70: 495–505

    Article  Google Scholar 

  • Sze H (1983) H+-pumping ATPase in membrane vesicles of tobacco callus: sensitivity to vanadate and K+. Biochim Biophys Acta 732: 586–594

    Article  CAS  Google Scholar 

  • Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Annu Rev Plant Physiol 36: 175–208

    Article  CAS  Google Scholar 

  • Sze H, Hodges TK (1976) Characterization of passive ion transport in plasma membrane of oat roots. Plant Physiol 58: 304–308

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ (1983) Quantitative studies of co-transport systems: models and vesicles. J Membr Biol 76: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Van Thieman B, Postma PW (1973) Coupling between energy conservation and active transport of serine in E. coli. Biochim Biophys Acta 323: 429–440

    Article  Google Scholar 

  • Vara F, Serrano R (1982) Partial purification and properties of the proton-translocating ATPase of plant plasma membranes. J Biol Chem 252: 5334–5336

    Google Scholar 

  • Waggoner AS (1979) Dye indicators of membrane potential. Annu Rev Biophys Bioeng 8: 47–68

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Briskin, D.P. (1989). Transport in Plasma Membrane Vesicles — Approaches and Perspectives. In: Larsson, C., Møller, I.M. (eds) The Plant Plasma Membrane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74522-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74522-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74524-9

  • Online ISBN: 978-3-642-74522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics