Skip to main content

Cell Culture

  • Chapter
Monoclonal Antibodies

Part of the book series: Springer Laboratory ((SLM))

  • 343 Accesses

Abstract

Permanent cell lines can be remarkably tolerant of unphysiological conditions and just such lines, for example the HeLa line, have established themselves worldwide for all kinds of applications in cell culture laboratories. This means that many laboratories work apparently successfully even if the culture conditions are not optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgarten H, Peters JH (1985) Kultivierung von Hybridomen bei erniedrigter Temperatur. In: Peters JH, Baumgarten H, Schulze M (eds) Monoklonale Antikörper, Herstellung und Charakterisierung. Springer, Berlin Heidelberg New York, pp 177–178

    Google Scholar 

  • Bendlin H (1989) Erzeugung, Qualität und Analytik hochreinen Wassers. Chem Lab Beitr 40:108–111

    CAS  Google Scholar 

  • Brooks AL, Li AP, Dutcher JS, Clark CR, Rothenberg SJ, Kiyoura R, Bechtold WE, McClellan RO (1984) A comparison of genotoxicity of automotive exhaust particles from laboratory and environmental sources. Environ Mutagen 6:651–668

    Article  PubMed  CAS  Google Scholar 

  • Bundesgesundheitsamt (1984) Liste der vom Bundesgesundheitsamt geprüften und anerkannten Desinfektionsmittel und -verfahren. Bundesgesundheitsblatt 27(3): 82–91

    Google Scholar 

  • Cohen D, Wanner RG (1981) The case of intoxicated cells — an epidemiologic note. Am J Epidemiol 113(3): 250–253

    PubMed  CAS  Google Scholar 

  • Dalili M, Ollis DF (1989) Transient kinetics of hybridoma growth and monoclonal antibody production in serum limited cultures. Biotechnol Bioeng 33:984–990

    Article  PubMed  CAS  Google Scholar 

  • Fazekas de St Groth S, Scheidegger D (1980) Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 35:1–21

    Article  Google Scholar 

  • Fick RB jr, Paul ES, Merrill WW, Reynolds HY, Loke JS (1984) Alterations in the antibacterial properties of rabbit pulmonary macrophages exposed to wood smoke. Am Rev Respir Dis 129:76–81

    PubMed  Google Scholar 

  • Giebel P, Seemayer NH (1984) Biologische Wirkung von atmosphärischen Feinstäuben. VIII. Impulszytophotometrische Zellzyklusanalysen an synchronisierten Kulturen syrischer Hamsternierenzellen (Linie 14–1 b). Zentralbl Bakteriol Mikrobiol Hyg B 179:406–430

    PubMed  CAS  Google Scholar 

  • Glick JL (1980) Fundamentals of human lymphoid cell culture. Marcel Dekker, New York

    Google Scholar 

  • Goding GW (1983) Monoclonal antibodies. Principles and practice. Academic Press, London, p 67

    Google Scholar 

  • Grizzle WE, Polt SS (1989) Guidelines to avoid personnel contamination by infective agents in research laboratories that use human tissues. J Tissue Cult Methods 11:191–199

    Article  Google Scholar 

  • Hachmann H (1991) The cleaning action of various disinfectants. Chim Oggi 9:25–29

    CAS  Google Scholar 

  • Hahon N (1983) Effect of coal rank on the interferon system. Environ Res 30:72–79

    Article  PubMed  CAS  Google Scholar 

  • Harris CC, Willey JC, Saladino AJ, Grafstrom RC (1985) Effects of tumor promoters, aldehydes, peroxides, and tobacco smoke condensate on growth and differentiation of cultured normal and transformed human bronchial cells. Carcinog Compr Surv 8:159–171

    PubMed  CAS  Google Scholar 

  • Hatch GG, Conklin PM, Christensen CC, Casto BC, Nesnow S (1983) Synergism in the transformation of hamster embryo cells treated with formaldehyde and adenovirus. Environ Mutagen 5:49–57

    Article  PubMed  CAS  Google Scholar 

  • Hytoenen S, Alfheim I, Sorsa M (1983) Effect of emissions from residential wood stoves on SCE induction in CHO cells. Mutat Res 118:69–75

    Article  Google Scholar 

  • Pasanen JT, Gustafsson TE, Kalliomaeki PL, Tossavainen A, Jaervisalo JO (1986) Cytotoxic effects of four types of welding fumes on macrophages in vitro: a comparative study. J Toxicol Environ Health 18:143–152

    Article  PubMed  CAS  Google Scholar 

  • Peters JH, Baumgarten H (1984) Increased yield of monoclonal antibody production in vitro by cultivation at low temperatures. International Cell Biology. Japan Society for Cell Biology. Academic Press, Japan, Tokyo, pp 460

    Google Scholar 

  • Reinders JH, Brinkman HJ, Mourik JH van, Groot PG de (1986) Cigarette smoke impairs endothelial cell prostacyclin production. Arteriosclerosis 6(1): 15–23

    Article  PubMed  CAS  Google Scholar 

  • Reuveny S, Velez D, Macmillan JD, Miller L (1991) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 86:53–59

    Article  Google Scholar 

  • Shimizu RW, Benson JM, Li AP, Henderson RF, Brooks AL (1984) Evaluation of the genotoxicity of process stream extracts from a coal gasification system. Environ Mutagen 6:825–834

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi F, Bandow H (1985) The genetic effects of the photochemical reaction products of propylene plus N02 on cultured Chinese hamster cells exposed in vitro. J Toxicol Environ Health 15:531–538

    Article  PubMed  CAS  Google Scholar 

  • Sureskumar GK, Mutharasan R (1991) The influence of temperature on mouse-mouse hybridoma growth and monoclonal antibody production. Biotechnol Bioeng 37:292–295

    Article  Google Scholar 

  • Wallhäußer KH (1984) Praxis der Sterilisation: Desinfektion — Konservierung, Keimidentifizierung — Betriebshygiene. Thieme, Stuttgart

    Google Scholar 

  • Williams J (1989) Pure water for biotechnology. Biotech 7:75–76

    Article  CAS  Google Scholar 

  • World Health Organization (1983) Laboratory Biosafety Manual. WHO, Geneva

    Google Scholar 

  • Yaeger JW, Cohn KL, Spear RC, Fisher JM, Morse L (1986) Sister-chromatid exchanges in lymphocytes of anatomy students exposed to formaldehyde-embalming solution. Mutat Res 174:135–139

    Article  Google Scholar 

  • Zamora PO, Benson JM, Marshall TC, Mokier BV, Li AP, Dahl AR, Brooks AL, McClellan RO (1983) Cytotoxicity and mutagenicity of vapor-phase pollutants in rat lung epithelial cells and Chinese hamster ovary cells grown on collagen gels. J Toxicol Environ Health 12:27–38

    Article  PubMed  CAS  Google Scholar 

References

  • Aarden LA, De Groot ER, Schaap OL, Lansdorp PM (1987) Production of hybridoma growth factor by human monocytes. Eur J Immunol 17:1411–1416

    Article  PubMed  CAS  Google Scholar 

  • Astaldi GCB (1983) Use of human endothelial culture supernatant (HECS) as a growth factor for hybridomas. Methods Enzymol 92:39–47

    Article  PubMed  CAS  Google Scholar 

  • Bazin R, Lemieux R (1989) Increased proportion of B cell hybridomas sectreting monoclonal antibodies of desired specificity in cultures containing macrophage-derived hybridoma growth factor (IL-6). J Immunol Methods 116:245–249

    Article  PubMed  CAS  Google Scholar 

  • Brodin T, Olsson L, Sjögren HO (1983) Cloning of human hybridoma, myeloma and lymphoma cell lines using enriched human monocytes as feeder layer. J Immunol Methods 60:1–7

    Article  PubMed  CAS  Google Scholar 

  • Pintus C, Ransom JH, Evans CH (1983) Endothelial cell growth supplement: a cell cloning factor that promotes the growth of monoclonal antibody producing hybridoma cells. J Immunol Methods 61:195–200

    Article  PubMed  CAS  Google Scholar 

  • Snick van J, Cayphas S, Vink A, Uytenhove C, Coulie PG, Rubira MR, Simpson RJ (1986) Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc Natl Acad Sci USA 83:9679–9683

    Article  PubMed  Google Scholar 

  • Stewart SS, Fuller SA (1989) Enhancement of hybridoma production by medium supplemented with murine ascitic fluid. J Immunol Methods 123:45–53

    Article  PubMed  CAS  Google Scholar 

  • Sugasawara R, Cahoon BE, Karu AE (1985) The influence of murine macrophage-conditioned medium on cloning efficiency, antibody synthesis, and growth rate of hybridomas. J Immunol Methods 79:263–275

    Article  PubMed  CAS  Google Scholar 

References

  • Conscience JF, Fischer F (1985) An improved preservation technique for cells of hemopoietic origin. Cryobiology 22:495–498

    Article  PubMed  CAS  Google Scholar 

  • Dooley DC, Law P, Schork P, Meryman HT (1982) Glycerolization of the human neutrophil for cryopreservation: Osmotic response of the cell. Exp Hematol 10:423–434

    PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Long term storage of cell lines. In: Harlow E, Lane D (eds) Antibodies. A laboratory manual. Cold Spring Harbor Laboratory, pp 257–260

    Google Scholar 

  • Oi VO, Herzenberg LA (1980) Immunoglobulin-producing hybrid cell lines. In: Mishell BB, Shiigi SM (eds) Selected methods in cellular immunology. Freeman, San Francisco, pp 363–365

    Google Scholar 

  • Patel R, Brown JC (1984) Hybridoma preservation at -70°C: a simple and economical procedure for the short-term storage and individual recovery of hybridomas. J Immunol Methods 71:211–215

    Article  PubMed  CAS  Google Scholar 

  • Peknicova J, Kristofova H (1985) 2-Step freezing of hybridomas in 96-well microculture plates. Folia Biol (Prague) 31:357–359

    CAS  Google Scholar 

  • Prince HE, Lee CD (1986) Cryopreservation and short-term storage of human lymphocytes for surface marker analysis. J Immunol Methods 93:15–18

    Article  PubMed  CAS  Google Scholar 

  • Sawada JI, Terao T (1986) Comparison of methods for freezing interleukin-dependent murine cell lines. J Immunol Methods 95:203–210

    Article  PubMed  CAS  Google Scholar 

  • Wells DE, Bibb WF (1986) A method fr freezing hybridoma clones in 96-well microculture plates. Methods Enzymol 121:417–422

    Article  PubMed  CAS  Google Scholar 

  • Zola H, Brooks D (1982) Techniques for the production and characterization of monoclonal hybridoma antibodies. In: Hurrell JGR (ed) Monoclonal hybridoma antibodies. CRC Press, Boca Raton, pp 36–38

    Google Scholar 

Further Reading

  • Harwell LW, Bolognino M, Bidlack JM (1984) A freezing method for cell fusions to distribute and reduce labor and permit more thorough early evaluation of hybridomas. J Immunol Methods 66:59–67

    Article  PubMed  CAS  Google Scholar 

References

  • Patel R, Brown JC (1984) Hybridoma preservation at -70°C: a simple and economical procedure for the short-term storage and individual recovery of hybridomas. J Immunol Methods 71:211–215

    Article  PubMed  CAS  Google Scholar 

  • Wells DE, Bibb WF (1986) A method for freezing hybridoma clones in 96-well microculture plates. Methods Enzymol 121:417–422

    Article  PubMed  CAS  Google Scholar 

  • Zola H, Brooks D (1982) Techniques for the production and characterization of monoclonal hybridoma antibodies. In: Hurrell JGR (ed) Monoclonal hybridoma antibodies. CRC Press, Boca Raton, pp 36–38

    Google Scholar 

Further Reading

  • Nakagawa S, Yoshiyuki T, Nishiura H, Isojima S (1986) Microimmunofluorescence using Terasaki plates and direct plate freezing method — rapid and reliable screening system of hybridomas. Microbiol Immunol 30:1167–1174

    PubMed  CAS  Google Scholar 

  • Peknicova J, Landa V (1985) 2-step freezing of cells used in hybridoma technology. Folia Biol(Prague) 31:340–343

    CAS  Google Scholar 

  • Wells DE, Price PJ (1983) Simple rapid methods for freezing hybridomas in 96-well microculture plates. J Immunol Methods 59:49–52

    Article  PubMed  CAS  Google Scholar 

References

  • Hovi T, Mosher D, Vaheri A (1977) Cultured human monocytes synthesize and secrete alpha-2-macroglobulin. J Exp Med 145:1580–1589

    Article  PubMed  CAS  Google Scholar 

References

  • Schimmelpfeng L, Langenberg U, Peters JH (1980) Macrophages overcome mycoplasma infections of cells in vitro. Nature 285:661–662

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H (1983) In vitro sterilisation of T lymphocyte lines infected with bacteria. J Immunol Methods 58:239–241

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Collins CH (1988) Laboratory-acquired infection: history incidence, causes and prevention. 2nd ed. Butterworths, London

    Google Scholar 

  • Wallhäußer KH, Schmidt H (1967) Sterilisation, Desinfektion, Konservierung, Chemotherapie. Thieme, Stuttgart, p 102–106

    Google Scholar 

References

  • Atkin CL, Cole BC, Sullivan GJ, Washburn LR, Wiley BB (1986) Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. V. A small basic protein from culture supernatants is a potent T cell nitrogen. J Immunol 137:1581–1589

    PubMed  CAS  Google Scholar 

  • Barile MF, Hopps HE, Grabowski MW (1973) The identification and sources of mycoplasmas isolated from contaminated cell cultures. Ann NY Acad Sci 225:251–264

    Article  Google Scholar 

  • Bertoni G, Keist R, Groscurth P, Wyler R, Nicolet J, Peterhans E (1985) A chemiluminescent assay for mycoplasmas in cell cultures. J Immunol Methods 78:123–133

    Article  PubMed  CAS  Google Scholar 

  • Birke C, Peter HH, Langenberg U, Hüller-Hermes WJP, Peters JH, Heitmann J, Leibold W, Dalügge H, Krapf E, Kirchner H (1981) Mycoplasma contamination in human tumor cell lines: effect on interferon induction and susceptibility to natural killing. J Immunol 127:94–98

    PubMed  CAS  Google Scholar 

  • Karsten U, Rudolph M (1985) Monoclonal antibodies against tumor-associated antigens: mycoplasma as a major technical obstacle and its possible circumvention by azaserine selection medium. Arch Geschwulstforsch 55(5): 305–310

    PubMed  CAS  Google Scholar 

  • Kirchner H, Brehm G, Nicklas W, Beck R, Herbst F (1986) Biochemical characterization of the T-cell mitogen derived from Mycoplasma arthritidis. Scand J Immunol 24:245–249

    Article  PubMed  CAS  Google Scholar 

  • Klieneberger-Nobel E (1938) Pleuropneumonia-like organisms of diverse provenance: some results of an enquiry into methods of differentiation. J Hyg 38:458–476

    Article  Google Scholar 

  • Lang K (1985) Mycoplasmen und Zellkulturen. Biol unserer Zeit 15(2):52–61

    Article  Google Scholar 

  • McGarrity GJ, Vanaman V, Sarama J (1984) Cytogenetic effects of mycoplasmal infection of cell cultures: a review. In Vitro 20:1–18

    Google Scholar 

  • Mühlradt PF, Quentmeier H, Schmitt E (1991) Involvement of Interleukin 1 (IL-1), IL-6, IL-2, and IL-4 in generation of cytotoxic T cells from thymocytes stimulated by a Mycoplasma fermentaus-derived product. Infect Immun, in press

    Google Scholar 

Further Reading

  • McCarrity GJ, Murphy DG, Nichols WW (ed) (1978) Mykoplasma infection of cell cultures. In: Nichols WW, Murphy DG (ed) Cellular senescence and somatic genetics. Plenum, New York Helga Gerlach

    Google Scholar 

References

  • Adler HE, Yamamoto R, Bankowski RA (1954) A preliminary report of efficienccy of various mediums for isolation of PPLO from exudate of birds with CRD. Am J Vet Res 15:463–465

    PubMed  CAS  Google Scholar 

  • Dienes L, Edsall J (1937) Observations on L-organisms of Klieneberger. Proc Soc Exp Biol Med 36:740–744

    Google Scholar 

  • Klieneberger E (1935) The natural occurrence of pleuropneumonia-like-organisms in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J Pathol Bacteriol 40:93–105

    Article  Google Scholar 

  • Shepard MC, Lunceford CD (1970) Urease color test medium U 9 for the detection and identification of “T”-mycoplasmas in clinical material. Appl Microbiol 20:539–543

    PubMed  CAS  Google Scholar 

  • Shepard MC, Lunceford CD, Ford DK, Purcell RH, Taylor-Robinson D, Razin S, Black FT (1974) Ureaplasma urealyticum gen. nov., sp. nov.: proposed nomenclature for the human T (T-strain) mycoplasmas. Int J Syst Bacteriol 24:160–171

    Article  Google Scholar 

Further Reading

  • Gylstorff I (ed) (1985) Infektionen durch Mycoplasmatales. Gischer, Jena

    Google Scholar 

References

  • Lang K (1985) Mycoplasmen und Zellkulturen. Biol Unserer Zeit 15(2): 52–61

    Article  Google Scholar 

  • Russel WC, Newman C, Williamson DH (1975) A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature 253:461–462

    Article  Google Scholar 

References

  • Gabridge MG, Lundin DJ, Gladd MF (1986) Detection and speciation of common cell culture mycoplasmas by an enzyme-linked immunosorbent assay with biotin-avidin amplification and microporous membrane solid phase. In vitro Cell Dev Biol 22:491–498

    Article  PubMed  CAS  Google Scholar 

  • Poutiers F, Bébéar C, Morméde M, Mégraud F, Bové M (1986) Mycoplasmas, contaminants in cell cultures. In: Bergmeyer J, Graßl M (eds) Methods in enzymatic analysis, vol XI. VCH, Deerfield Beach, USA, pp 200–212

    Google Scholar 

References

  • Schmidt J, Erfle V (1984) Elimination of mycoplasmas from cell cultures and establishment of mycoplasma-free cell lines. Exp Cell Res 152:565–570

    Article  PubMed  CAS  Google Scholar 

  • Schmitt K, Däubener W, Bitter-Suermann D, Hadding U (1988) A safe and efficient method for elimination of cell culture mycoplasmas using ciprofloxacin. J Immunol Methods 109:17–25

    Article  PubMed  CAS  Google Scholar 

References

  • Kreipe H, Radzun HJ, Keulers A, Parwaresch MR (1987) An improved method for eliminating mycoplasmas from cell cultures. J Immunol Methods 103:185–188

    Article  PubMed  CAS  Google Scholar 

  • Schimmelpfeng L, Langenberg U, Peters JH (1980) Macrophages overcome mycoplasma infections of cells in-vitro. Nature 285:661–662

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J, Erfle V (1984) Elimination of mycoplasmas from cell cultures and establishment of mycoplasma-free cell lines. Exp Cell Res 152:565–570

    Article  PubMed  CAS  Google Scholar 

  • Triglia T, Burns GF (1983) A method for in vitro clearance of mycoplasma from human cells. J Immunol Methods 64:13–139

    Article  Google Scholar 

  • Wekerle H (1983) In vitro sterilization of T lymphocyte lines infected with bacteria. J Immunol Methods 58:239–241

    Article  PubMed  CAS  Google Scholar 

References

  • Beletsky IP, Umansky SR (1990) A new assay for cell death. J Immunol Methods 134:201–205

    Article  PubMed  CAS  Google Scholar 

  • Edidin M (1970) A rapid, quantitative fluorescence for cell damage by cytotoxic antibodies. J Immunol 104:1303–1306

    PubMed  CAS  Google Scholar 

  • Gurr E (1971) Synthetic dyes and biological problems. Academic Press, London, p 319

    Google Scholar 

  • Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Singh J, Taylor RB (1975) Subclasses of T cells with different sensitivities to cytotoxic antibody in the presence of anesthetics. Eur J Immunol 5:259–262

    Article  PubMed  CAS  Google Scholar 

  • McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogen as mutagens in Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72:5135–5139

    Article  PubMed  CAS  Google Scholar 

  • Mishell BB, Shiigi SM (1980) Selected methods in cellular immunology. Freeman, San Francisco, pp 16–19

    Google Scholar 

  • Parks DR, Bryan VM, Oi VT, Herzenberg LA (1979) Antigen-specific identification and cloning of hybridomas with a fluorescence-activated cell sorter (FACS). Proc Natl Acad Sci USA 76:1962–1966

    Article  PubMed  CAS  Google Scholar 

  • Phillips HJ (1973) Dye exclusion tests for cell viability. In: Kruse PF (ed) Tissue culture. Academic Press, New York, pp 407–408

    Google Scholar 

  • Rotman B, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA 55:134–141

    Article  PubMed  CAS  Google Scholar 

  • Tennant JR (1964) Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2:685–694

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, J.H., Debus, E., Baumgarten, H., Würzner, R., Schulze, M., Gerlach, H. (1992). Cell Culture. In: Peters, J.H., Baumgarten, H. (eds) Monoclonal Antibodies. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74532-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74532-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74534-8

  • Online ISBN: 978-3-642-74532-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics