Skip to main content

Interactions Between SV40 and Cellular Oncogenes in the Transformation of Primary Rat Cells

  • Conference paper
Transforming Proteins of DNA Tumor Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 144))

Abstract

The transforming activity of SV40 large T antigen is due to the ability of this protein to interfere with and modify a variety of cellular regulatory processes (Tooze 1981). Cellular proto-oncogene products have been shown to play key roles in such normal processes (Weinberg 1985; Bishop 1987). It is thus conceivable that SV40-mediated transformation may both affect the functioning of certain proto-oncogenes and, reciprocally, be influenced by the particular proto-oncogene expression patterns and oncogene activation events present in various cells. In order to gain further insight into this aspect of large T-antigen action, we investigated the ability of specific activated cellular oncogenes to play a role in SV40-mediated transformation. The studies described below demonstrate that such cellular proteins may indeed dramatically affect the ability of SV40 to cause transformation. Furthermore, the aberrant expression of cellular oncogenes may greatly influence the biochemical and physiological consequences of large T-antigen action in the transformed cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Zeev A, Amsterdam A (1987) In vitro regulation of granulosa cell differentiation: involvement of cytoskeletal protein expression. J Biol Chem 262: 5366–5376

    CAS  Google Scholar 

  • Bishop JM (1987) The molecular genetics of cancer. Science 235: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Deppert W, Haug M (1986) Evidence for free and metabolically stable p53 protein in nuclear sub-fractions of SV40-transformed cells. Mol Cell Biol 6: 2233–2240

    PubMed  CAS  Google Scholar 

  • Deppert W, Haug M, Steinmayer R (1987) Modulation of p53 protein expression during cellular transformation with SV40. Mol Cell Biol 7: 4453–4463

    PubMed  CAS  Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312: 646–649

    Article  PubMed  CAS  Google Scholar 

  • Eliyahu D, Michalovitz D, Oren M (1985) Overproduction of p53 antigen makes established cells highly tumorigenic. Nature 316: 158–160

    Article  PubMed  CAS  Google Scholar 

  • Eliyahu D, Goldfinger N, Pinhasi-Kimhi O, Shaulsky G, Skurnik Y, Arai N, Rotter V, Oren M (1988) Meth A fibrosarcoma cells express two transforming mutant p53 species, (manuscript submitted)

    Google Scholar 

  • Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8: 531–539

    PubMed  CAS  Google Scholar 

  • Fischer-Fantuzzi L, Vesco C (1985) Deletion of 43 amino acids in the NH2-terminal half of the large tumor antigen of simian virus 40 results in a non-karyophilic protein capable of transforming established cells. Proc Natl Acad Sci USA 82: 1891–1895

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Fantuzzi L, Scheidtmann KH, Vesco C (1986) Biochemical properties of a transforming nonkaryophilic T antigen of SV40. Virology 153: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Garcia I, Sordat B, Rauccio-Farinon E, Dunand M, Kraehenbuhl JP, Diggelman H (1986) Establishment of two rabbit mammary epithelial cell lines with distinct oncogenic potential and differentiated phenotype after microinjection of transforming genes. Mol Cell Biol 6: 1974–1982

    PubMed  CAS  Google Scholar 

  • Hinds PW, Finlay CA, Frey AB, Levine AJ (1987) Immunological evidence for the association of p53 with a heat-shock protein, hsc 70, in p53-plus-ras-transformed cell lines. Mol Cell Biol 7:2863–2869

    PubMed  CAS  Google Scholar 

  • Jenkins JR, Rudge K, Currie GA (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–654

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek L, Oren M, Baserga R (1986) Co-operation between the p53 protein tumor antigen and platelet-poor plasma in the induction of cellular DNA synthesis. Exp Cell Res 162: 268–272

    Article  PubMed  CAS  Google Scholar 

  • Kohen F, Bauminger S, Lindner HR (1975) In: Cameron EHD, Hillier SG, Griffiths K (ed) Steroid immunoassay, Alpha Omega, Cardiff, pp 11–23

    Google Scholar 

  • Lane, DP, Crawford LV (1979) T antigen is bound to a host protein in SV-40 transformed cells. Nature 278:261–263

    Article  PubMed  CAS  Google Scholar 

  • Maltzman W, Oren M, Levine AJ (1981) The structural relationships between 54,000-molecular-weight cellular tumor antigens detected in viral and nonviral transformed cells. Virology 112: 145–156

    Article  PubMed  CAS  Google Scholar 

  • McCormick F, Harlow E (1980) Association of a murine 53,000 dalton phosphoprotein with simian virus 40 large-T antigen in transformed cells. J Virol 34: 213–224

    PubMed  CAS  Google Scholar 

  • Michalovitz D, Eliyahu D, Oren M (1986) Overproduction of protein p53 contributes to simian virus 40-mediated transformation. Mol Cell Biol 6: 3531–3536

    PubMed  CAS  Google Scholar 

  • Michalovitz D, Fischer-Fantuzzi L, Vesco C, Pipas JM, Oren M (1987) Activated Ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. J Virol 61: 2648–2654

    PubMed  CAS  Google Scholar 

  • Oren M, Maltzman W, Levine A (1981) Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol Cell Biol 1: 101–110

    PubMed  CAS  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumor antigen and ras in cellular transformation. Nature 312: 649–651

    Article  PubMed  CAS  Google Scholar 

  • Pelham H (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46: 959–961

    Article  PubMed  CAS  Google Scholar 

  • Pinhasi-Kimhi O, Michalovitz D, Ben-Zeev A, Oren M (1986) Specific interaction between the p53 cellular tumor antigen and major heat-shock proteins. Nature 320: 182–185

    Article  PubMed  CAS  Google Scholar 

  • Pipas JM, Peden KWC, Nathans D (1983) Mutational analysis of Simian Virus 40 T antigen: isolation and characterization of mutants with deletions in the T antigen gene. Mol Cell Biol 3: 203–213

    PubMed  CAS  Google Scholar 

  • Samad A, Anderson CW, Carroll RB (1986) Mapping of the phosphomonoester and apparent phosphodiester bonds of the oncogene product p53 from SV40-transformed 3T3 cells. Proc Natl Acad Sci USA 83: 897–901

    Article  PubMed  CAS  Google Scholar 

  • Shih C, Weinberg RA (1982) Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Sompayrac LM, Gurney EG, Danna KJ (1983) Stabilization of the 53,000-dalton nonviral tumor antigen is not required for transformation by simian virus 40. Mol Cell Biol 3: 290–296

    PubMed  CAS  Google Scholar 

  • Stürzbecher HW, Chumakov P, Welch WJ, Jenkins JR (1987) Mutant p53 proteins bind hsp72/73 cellular heat chock-related proteins in SV40-transformed monkey cells. Oncogene 1: 201–211

    PubMed  Google Scholar 

  • Tan TH, Wallis J, Levine AJ (1986) Identification of the p53 protein domain involved in formation of the simian virus 40 large T antigen-p53 protein complex. J Virol 59: 574–583

    PubMed  CAS  Google Scholar 

  • Tooze J (ed) (1981) DNA tumor viruses. Molecular biology of tumor viruses, pt. 2. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Walter G, Carbonne A, Welch WJ (1987) Medium tumor antigen of Polyomavirus transformation-defective mutant NG59 is associated with 73-kilodalton heat-shock protein. J Virol 61: 405–410

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1985) The action of oncogenes in the cytoplasm and nucleus. Science 230: 770–776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Michalovitz, D., Amsterdam, A., Oren, M. (1989). Interactions Between SV40 and Cellular Oncogenes in the Transformation of Primary Rat Cells. In: Knippers, R., Levine, A.J. (eds) Transforming Proteins of DNA Tumor Viruses. Current Topics in Microbiology and Immunology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74578-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74578-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74580-5

  • Online ISBN: 978-3-642-74578-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics