Skip to main content

The Use of Transgenic Plants to Study Phytochrome Domains Involved in Structure and Function

  • Conference paper
Phytochrome Properties and Biological Action

Part of the book series: NATO ASI Series ((ASIH,volume 50))

  • 77 Accesses

Abstract

During the 30 years since its initial isolation, a great body of information has accumulated concerning the structure of phytochrome, the physiological responses it controls, and the genes whose expression it affects, yet little is known about the molecular mechanisms of phytochrome action. The recent advent of technologies allowing the expression of heterologous phytochrome genes in transgenic plants provide an important new method for research into the mechanisms of phytochrome action (Keller et al., 1989; Boylan and Quail, 1989; Kay et al., 1989). In the first report of this approach, Keller et al. (1989) described the expression of a functional oat phytochrome in tobacco. Transgenic plants expressing the oat protein have a radically altered phenotype characterized by decreased stem elongation, increased leaf chlorophyll content, reduced apical dominance, and delayed leaf senescence. Exploiting this “light-exaggerated” phenotype as an assay, it is now possible to identify and examine domains involved in phytochrome structure and function by in vitro mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boylan MT, Quail PH (1989) Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1:765–773.

    Article  PubMed  CAS  Google Scholar 

  • Cherry JR, Hershey HP, Vierstra RD (1990) Physiological and biochemical characterization of tobacco expressing functional oat phytochrome. Plant Cell (submitted).

    Google Scholar 

  • De Greef JA, Fredericq JH (1983) In: Shropshire W, Mohr H (eds) Encyclopedia of plant physiology: Photomorphogenesis and hormones 16A:401–427.

    Google Scholar 

  • Finley D, Varshavsky A (1985) The ubiquitin system: functions and mechanisms. Trends Biochem Sci 10:343–347.

    Article  CAS  Google Scholar 

  • Hershey HP, Barker RF, Idler KB, Lissemore JL, Quail PH (1985) Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequence for two gene products expressed in etiolated Avena. Nucleic Acids Res 13:8543–8559.

    Article  PubMed  CAS  Google Scholar 

  • Hershko A (1988) Ubiquitin: roles in protein modification and breakdown. Cell 34:11–12.

    Article  Google Scholar 

  • Horsch R, Frey J, Hoffman N, Walroth M, Eicholtz D, Rogers S, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231.

    Article  CAS  Google Scholar 

  • Hough R, Pratt G, Rechsteiner M (1986) Ubiquitin-lysozyme conjugates. J Biol Chem 261: 2400–2408.

    PubMed  CAS  Google Scholar 

  • Jabben M, Shanklin J, Vierstra RD (1989a) Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots. Plant Physiol 90:380–384.

    Article  PubMed  CAS  Google Scholar 

  • Jabben M, Shanklin J, Vierstra RD (1989b) Ubiquitin-phytochrome conjugates: Pool dynamics during in vivo phytochrome degradation. J Biol Chem 264:4998–5005.

    PubMed  CAS  Google Scholar 

  • Jones AM, Vierstra RD, Daniels SM, Quail PH (1985) The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L. Planta 164:501–506.

    Article  CAS  Google Scholar 

  • Jones AM, Quail PH (1989) Phytochrome structure: peptide fragments from the amino-terminal domain involved in protein-chromophore interactions. Planta 178:147–156.

    Article  CAS  Google Scholar 

  • Kay SA, Nagatani A, Keith B, Deak M, Furuya M, Chua N-H (1989) Rice phytochrome is biologically active in transgenic tobacco. Plant Cell 1:775–782.

    Article  PubMed  CAS  Google Scholar 

  • Keller JM, Shanklin J, Vierstra RD, Hershey HP (1989) Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J 8:1005–1012.

    PubMed  CAS  Google Scholar 

  • Kende H, Lang A (1964) Gibberellins and light inhibition of stem growth in peas. Plant Physiol 39:435–440.

    Article  PubMed  CAS  Google Scholar 

  • Koornneff M, Bosma TDG, Hanhart CJ, van der Veen JH, Zeevaart JAD (1990) Isolation and characterization of GA-deficient mutants in tomato. Theor Appl Genetics (submitted).

    Google Scholar 

  • Pratt LH (1978) Molecular properties of phytochrome. Photochem Photobiol 27:81–105.

    Article  CAS  Google Scholar 

  • Quail PH, Schafer E, Manne D (1973) Turnover of phytochrome in pumpkin cotyledons. Plant Physiol 52:128–131.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Jabben M, Vierstra RD (1987) Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci USA 84:359–363.

    Article  PubMed  CAS  Google Scholar 

  • Steffens GL, Byun JK, Wang SY (1985) Controlling plant growth via the gibberellin biosynthesis system I. Growth parameter alterations in apple seedlings. Physiol Plant 63:163–168.

    Article  CAS  Google Scholar 

  • Tohuhisa JG, Daniels SM, Quail PH (1985) Phytochrome in green tissue: Spectral and immunochemical evidence for two distinct molecular species of phytochrome in light grown Avena sativa Planta 164:321–332.

    Article  Google Scholar 

  • Vierstra RD, Quail PH (1982) Native phytochrome: Inhibition of proteolysis yields a homogeneous monomer of 124 kilodaltons from Avena Proc Natl Acad Sci USA 79:5272–5275.

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD, Quail PH (1983) Purification and initial characterization of 124-kilodalton phytochrome from Avena Biochemistry 22:2498–2505.

    Article  CAS  Google Scholar 

  • Vierstra RD, Quail PH (1986) Phytochrome: the protein. In:Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants Martinus Nijhoff Publishers, The Netherlands, p 35–59.

    Google Scholar 

  • Vierstra, R.D., (1989) Protein Degradation. In:(eiMarcus, A. ed) Biochemistry of Plants: A Comprehensive Treatise Academic Press, NY. 15:521–536.

    Google Scholar 

  • Wang SY, Byun JK, Steffens GL (1985) Controlling plant growth via the gibberellin biosynthesis system-II Biochemidal and physiological alterations in apple seedlings. Physiol Plant 72:169–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cherry, J.R., Hondred, D., Keller, J.M., Hershey, H.P., Vierstra, R.D. (1991). The Use of Transgenic Plants to Study Phytochrome Domains Involved in Structure and Function. In: Thomas, B., Johnson, C.B. (eds) Phytochrome Properties and Biological Action. NATO ASI Series, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75130-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75130-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75132-5

  • Online ISBN: 978-3-642-75130-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics