Skip to main content

Biophysical Models of Radiation Action - Development of Simulation Codes

  • Conference paper
The Early Effects of Radiation on DNA

Part of the book series: NATO ASI Series ((ASIH,volume 54))

Abstract

Radiation carcinogenesis from different radiation fields at low doses and low dose rates remains to be an important research topic in radiation protection. Most likely particular modification of DNA play a decisive role in the initiation steps of carcinogenesis, and, thus, detailed analyses must be performed of the interaction events of different radiation fields with DNA and of their quantitative correlation with the yields of important cellular responses (e.g. transformations). Such analysis must comprise detailed simulations in a computer of all relevant physical interaction processes, the simulation of the subsequent direct chemical modifications of the DNA and the surrounding cellular structures and of those occurring through subsequent diffusion controlled chemical reactions, and a correlation study of the frequency of important events deemed relevant in this context with frequencies of important cellular responses (e.g. DNA strand breaks, chromosome changes, transformations) using mechanistic working hypotheses for the initial carcinogenetic actions of different radiation fields.

This paper describes the state of the art in the simulation of charged particle tracks from various radiation fields (photons, neutrons, internal emitters) in biological cells for the calculation of direct and indirect modifications of the DNA. A significant progress could be achieved through the recent availability of interaction cross sections for condensed molecules and of very powerful parallel computers. Presently the main shortcomings in the track structure approach to understand radiation action are the lack of solid information on the migration and decay of excited states in DNA, and of good working hypotheses for relevant sensitive target structures in a cell and the chemical changes needed in them to trigger initiating steps in radiation carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baverstock KF, Cundall RB (1988) Long-range energy transfer in DNA. Radiation Phys Chem 32: 553–556

    CAS  Google Scholar 

  • Baverstock KF, Will S (1989) Evidence for the dominance of direct excitation of DNA in the formation of strand breks in cells following irradiation. Int J Radiat Biol 55: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Bednar J (1989) Solitons in radiation chemistry and biology. J Radioanalyt Nucl Chem 133: 185–197

    Article  CAS  Google Scholar 

  • Benton EV, Starace AF (eds) (1989) Special issue: Recent Advances in track physics. Nucl. Tracks and Radiat. Meas 16: 81–224

    Google Scholar 

  • Berger M (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Methods in computational physics, Alder B, Fernback S, Rotenberg M (Eds), Vol. 1: 135–215, Academic Press, N.Y.

    Google Scholar 

  • Bethe H (1930) Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann Phys 5: 325–400

    Article  CAS  Google Scholar 

  • Chadwick KH, Leenhouts HP (1981) The molecular theory of radiation biology, Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Chatterjee A, Holley WR (1989) Energetic electron tracks and DNA strand breaks. Nucl Tracks and Radiat Meas 16: 127–133

    Article  CAS  Google Scholar 

  • Feinendegen LE (1990) The cell dose concept; potential application in radiation protection. Phys Med Biol 35: 597–612

    Article  PubMed  CAS  Google Scholar 

  • Gelius U (1972) Electron Spectroscopy. Shirley DA (ed) p 311

    Google Scholar 

  • Goodhead DT (1984) Deductions from cellular studies on inactivation, muta–genesis and transformation. In: Radiation Carcinogenesis: Epidemiology and biological significance, Boice JD, Fraumeni Jr, JF (eds) p. 369–385, Raven, New York

    Google Scholar 

  • Goodhead DT (1988) Spatial and temporal distribution of energy. Health Phys 55: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Goodhead DT (1989) Initial physical damage produced by ionizing radiation. Int J Radiat Biol 56: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Goulet T, Jay-Gerin J-P (1988) Thermalization distances and times for subexcitation electrons in solid water. Radiat Res 118: 46–62

    Article  Google Scholar 

  • Großwendt B (1983) Track structure studies of low-energy electrons in TE gas. In: 8th Symp on Microdosimetry, Booz J, Ebert HG (eds) CEC-Publication EUR 8395, p. 79–88 Luxemburg

    Google Scholar 

  • Günther K, Schulz W (1983) Biophysical theory of radiation action. Academie-Verlag, Berlin

    Google Scholar 

  • Hamm RN, Wright HA, Katz R, Turner JE, Ritchie RH (1978) Calculated yields and slowing down spectra for electrons in liquid water: implications for electron and photon RBE. Phys Med Biol 23: 1149–1161

    Article  PubMed  CAS  Google Scholar 

  • Harder D, Blohm R, Kessler M (1988) Restricted LET remains a good parameter of radiation quality. Radiat Prot Dosim 23: 79–82

    CAS  Google Scholar 

  • Hubbell JH, Veigele WJ, Briggs EA, Brown RT, Cromer DT, Howerton RJ (1975) Atomic form factors, incoherent scattering functions and photon scattering cross sections. J Phys Chem Ref Data 4: 471

    Article  CAS  Google Scholar 

  • IAEA (1989) Atomic and Molecular Data for Radiotherapy.Proceedings of an Advisory Group Meeting, IAEA-TECDOC–506 Vienna

    Google Scholar 

  • ICRU (1986) Report of a Joint Task Group of the ICRP and ICRU to the ICRP and ICRU: The Quality Factor in Radiation Protection. Report 40, Beth-esda, USA

    Google Scholar 

  • Inokuti M (1971) Inelastic collision of fast charged particles with atoms and molecules - the Bethe theory revisited. Rev Mod Phys 43: 297–347

    Article  CAS  Google Scholar 

  • Inokuti M (1983) Radiation physics as a basis for radiation chemistry and biology. Appl Atomic Collision Physics, Vol. 4,179–36

    Google Scholar 

  • Ito A (1988) Electron track simulation for microdosimetry. In: Monte Carlo transport of electrons and photons, TM Jenkins, WR Nelson, A Rindi (eds) Plenum Press, N.Y., London: 361–84

    Google Scholar 

  • Kaplan IG, Miterev AM (1989) Characteristics of the interaction of ionizing radiation with a molecular medium and the role of tracks in radiation chemistry. Usp Khim 55: 13–42

    Google Scholar 

  • Katz R, Sharma SC, Hqmayoonfar M (1972) The structure of particle tracks. In: Topics in Radiation Dosimetry, Supp 1: 317–83, FH Attix (ed), Academic Press, New York, London

    Google Scholar 

  • Kellerer AM, Rossi HH (1974) The theory of dual radiation action. In: Current Topics in Radiation Res, Vol VIII: 85–58, North-Holland Publ, Amsterdam

    Google Scholar 

  • Kraft G (1989) Interpretation of radiobiological experiments performed with heavy charged particles. Loc cit IAEA (1989): 117–27

    Google Scholar 

  • Long KA, Paretzke HG, Müller-Plathe F, Diercksen GHF (1989) Calculation of double differential cross sections for the interaction of electrons with a water molecule, clusters of water molecules and liquid water. J Chem Phys 91: 1569–1577

    Article  CAS  Google Scholar 

  • Mozumder A, Magee J (1966) Model of tracks of ionizing radiations for radical reaction mechanisms. Radiat Res 28: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Nikjoo H, Goodhead DT, Charlton DE, Paretzke HG (1989) Energy deposited in small cylindric targets by ultrasoft x-rays. Phys Med Biol 34: 691–705

    Article  PubMed  CAS  Google Scholar 

  • Olko P, Booz J, Paretzke HG, Wilson WE (1989) Energy deposition in the nanometer sites based on the track structure calculations, loc cit IAEA (1989): 105–116

    Google Scholar 

  • Paretzke HG (1987) Radiation track structure theory. In: Kinetics of non-homogeneous processes. GR Freeman (ed), Wiley & Sons, N.Y.: 89–170

    Google Scholar 

  • Paretzke HG (1988) Simulation von Elektronenspuren im Energiebereich 0,0110 keV in Wasserdampf, GSF-Bericht 24/88, Neuherberg

    Google Scholar 

  • Paretzke HG (1989) Parameters characterizing charged particle track structures. Loc cit IAEA (1989): 72–79

    Google Scholar 

  • Paretzke HG, Berger MJ (1978) Stopping power and energy degradation for electrons in water vapour. In: Proc 6th Symp on Microdosimetry, Booz J, Ebert HG (eds) Harwood Academic Publ, London. p. 749–758

    Google Scholar 

  • Pihet P, Menzel HG (1989) Atomic data required in accurate measurements of kerma for neutrons with low pressure proportional counters. Loc cit IAEAU(1989): 91–105

    Google Scholar 

  • Ritchie RH, Hamm RN, Turner JE, Wright HA, Ashley JC, Basbas GJ (1989) Physical aspects of charged particle track structure. Nucl Tracks and Radiat Meas 16: 141–155

    Article  CAS  Google Scholar 

  • Sanche L (1987) Experimental studies on the interactions of slow electrons with molecules in solid films. In: Radiation Research, Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Vol 2: 260–265

    Google Scholar 

  • Schou J (1988) Secondary electron emission from solids by electron and proton bombardment. Scanning Microscopy 2: 607–632

    CAS  Google Scholar 

  • Siegbahn K, Nordling C, Johansson, G, Hedman J, et al (1969) ESCA applied to free molecules. North Holland Publ Comp, Amsterdam

    Google Scholar 

  • Tan KH, Brion CE, Van der Leeuw PE, Van der Wiel MJ (1978) Absolute oscillator strengths (10–60 V) for the photoabsorption, photoionisation, and fragmentation of HoO. Chem Phys 29: 299–309

    Article  CAS  Google Scholar 

  • Terrisol M (1978) Methode de simulation du transport délectrons d’6ner-gies comprises entre 10 eV and 30 keV. These de Doctorat ès-Sciences, No. 839, Toulouse.

    Google Scholar 

  • Terrisol M, Bordage MC, Caudrelier V, Segur P (1989) Cross sections for 0.025 eV-1 keV electrons and 10 eV-1 keV photons. Loc cit IAEA (1989): 219–233

    Google Scholar 

  • Van Rijzin J (ed) (1977) Classification and Clustering. Academic Press, New York

    Google Scholar 

  • Watt DE (1989). An approach towards a unified theory of damage to mammalian cells by ionising radiation for absolute dosimetry. Radiat Prot Dosim 27: 73–84

    CAS  Google Scholar 

  • Wilson WE, Toburen LH (1973) Electron emission in H& - Ho collisions from 0.6 to 1.5 MeV. Phys Rev A7: 1535–1544

    Google Scholar 

  • Zaider M, Brenner DJ, Wilson WE (1983) The application of track calculations to radiobiology. I. Monte Carlo simulation of proton tracks. Radiat Res 95: 231–247

    Article  CAS  Google Scholar 

  • Zaider M, Brenner DJ (1984) On the stochastic treatment of fast chemical reactions. Radiat Res 100: 245–256

    Article  PubMed  CAS  Google Scholar 

  • Zaider M, Fry JL, Orr DE (1989) A semiempirical tight-binding calculation of the dielectric response function of water. Nucl Tracks and Radiat Meas 16: 159–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paretzke, H.G. (1991). Biophysical Models of Radiation Action - Development of Simulation Codes. In: Fielden, E.M., O’Neill, P. (eds) The Early Effects of Radiation on DNA. NATO ASI Series, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75148-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75148-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75150-9

  • Online ISBN: 978-3-642-75148-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics