Skip to main content

Retroviral Proteinases

  • Conference paper
Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 157))

Abstract

Limited proteolysis is a well-established posttranslational mechanism by which cellular and viral precursor proteins are cleaved by specific proteinases into functional species (Koch and (Richter 1980). Examples of such cellular proteins are the neuropolypeptide prohormones (Mains et al. 1983) and propiocortin, while the best known viral polyproteins are the polio (Summers and Maizel 1968; Jacobson and Baltimore 1968) and retroviral gag and gag-pol encoded polyproteins (Dickson et al. 1984). Two recent reviews during the past year have focused on viral proteinases coded for by positive-strand RNA viruses e.g., picorna and toga-flavivirus families (Kräusslich and Wimmer 1988), or by plant viruses (Wellink and van Kammen 1988). The focus of this review will be on a discussion of the biochemical properties as well as functions of retroviral proteinases (PR). These enzymes cleave both gag and gag-pol encoded polyproteins (cleavage of the env encoded polyprotein occurs via a cellular Golgilocalized enzyme).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcement LJ, Karshin WL, Naso RB, Jamjoom GA, Arlinghaus RB (1976) Biosynthesis of Rauscher leukemia viral proteins: presence of p30 and envelope pi 5 sequences in precursor polyproteins. Virology 69: 763–774

    PubMed  CAS  Google Scholar 

  • Barbacid M, Stephenson JR, Aaronson SA (1976) Gag gene of mammalian type C RNA tumor viruses. Nature 262: 554–559

    PubMed  CAS  Google Scholar 

  • BarrĂ©-Sinoussi F, Chermann J-C, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Brun-VĂ©zinet F, Rouzious C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency. Science 220: 868–871

    PubMed  Google Scholar 

  • Berger A, Schechter I (1970) Mapping the active site of papain with the aid of peptide substrate and inhibitors. Philos Trans R Soc Lond [Biol] 257: 249–264

    CAS  Google Scholar 

  • Billich S, Knoop M-T, Hansen J, Strop P, Sedlacek J, Mertz R, Moelling K (1988) Synthetic peptides as substrates and inhibitors of human immunodeficiency virus-1 protease. J Biol Chem 263: 17905–17908

    PubMed  CAS  Google Scholar 

  • Blundell T, Pearl L (1989) Retroviral proteinases—a second front against AIDS. Nature 337: 596–597

    PubMed  CAS  Google Scholar 

  • Blundell T, Jenkins J, Pearl L, Sewell T, Pedersen V (1985) The high resolution structure of endothiapepsin. In: Kostka V (ed) Aspartic proteinases and their inhibitors. de Gruyter, Berlin, pp 151–161

    Google Scholar 

  • Blundell T, Carney D, Gardner S, Hayes F et al. (1988) 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur J Biochem 172: 513–520

    Google Scholar 

  • Bolognesi DP (1974) Structural components of RNA tumor viruses. Adv Virus Res 19: 315–359

    PubMed  CAS  Google Scholar 

  • Bolognesi DP, Montelaro RC, Frank H, Schafer W (1978) Assembly of type C oncornaviruses: a model. Science 199: 183–186

    PubMed  CAS  Google Scholar 

  • Bu M, Oroszlan S, Luftig RB (1989) Inhibition of bacterially expressed HIV protease activity as determined by an in vitro cleavage assay with MuLV Pr65gag. AIDS Res Hum Retroviruses 5:259–268

    PubMed  CAS  Google Scholar 

  • Copeland TD, Oroszlan S (1981) Chemical synthesis of a retroviral nucleic acid binding protein. In: Rich DH, Gross E (eds) Peptides: synthesis, structure and function. Pierce, Rockford, pp 497–500

    Google Scholar 

  • Copeland TD, Oroszlan S (1988) Genetic locus, primary structure and chemical synthesis of HIV protease. Gen Anal Tech 5: 109–115

    CAS  Google Scholar 

  • Copeland TD, Oroszlan S, Kalyanaraman VS, Sarngadharan MG, Gallo RC (1983) Complete amino acid sequence of human T-cell leukemia virus structural protein p 15. FEBS Lett 162: 390–395

    PubMed  CAS  Google Scholar 

  • Crawford S, Goff SP (1985) A deletion mutant in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. J Virol 53: 899–907

    PubMed  CAS  Google Scholar 

  • Debouck C, Gorniak JG, Strickler JE, Meek TD, Metcalf BW, Rosenberg M (1987) Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc Natl Acad Sci USA 84: 8903–8906

    PubMed  CAS  Google Scholar 

  • Dickson C, Eisenman R, Fan H, Hunter E, Teich N (1984) Protein biosynthesis and assembly. In: Weiss R, Teich N, Varmus H (eds) RNA tumor viruses, molecular biology of tumor viruses, 1st ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 528–547

    Google Scholar 

  • Dickson C, Eisenman R, Fan H (1985) Supplement. Protein biosynthesis and assembly. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses, molecular biology of tumor viruses, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 135–143

    Google Scholar 

  • Dittmar KJ, Moelling K (1978) Biochemical properties of pl5-associated protease in an avian RNA tumor virus. J Virol 28: 106–118

    PubMed  CAS  Google Scholar 

  • Eisenman RN, Vogt VM (1978) The biosynthesis of oncovirus proteins. Biochem Biophys Acta 473: 187–239

    PubMed  CAS  Google Scholar 

  • Eisenman RN, Vogt VM, Diggelman H (1975) Synthesis of avian RNA tumor virus structural proteins. Cold Spring Harbor Symp Quant Biol 39: 1067–1075

    PubMed  Google Scholar 

  • Farmerie WG, Loeb DD, Casavant NC, Hutchison CA III, Edgell MH, Swanstrom R (1987) Expression and processing of the AIDS virus reverse transcriptase in Escherichia coli Science 236: 305–308

    PubMed  CAS  Google Scholar 

  • Felsenstein KM, Goff SP (1988) Expression of the gag-pol fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation of proteolytic processing. J Virol 62:2179–2182

    PubMed  CAS  Google Scholar 

  • Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B, White G, Foster P, Markham PD (1984) Frequent detection and isolation of cytopathic retrovirus (HTLV-IH) from patients with AIDS and at risk for AIDS. Science 224: 500–503

    PubMed  CAS  Google Scholar 

  • Gonda MA (1988) Molecular genetics and structure of the human immunodeficiency virus. J Electron Microsc Tech 8: 17–40

    PubMed  CAS  Google Scholar 

  • Graves MC, Lim JJ, Heimer EP, Kramer RA (1988) An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proc Natl Acad Sci USA 85: 2449–2453

    PubMed  CAS  Google Scholar 

  • Hafenrichter R, Thiel HJ (1985) Simian sarcoma virus-encoded gag-related protein: in vitro cleavage by Friend leukemia virus-associated proteolytic activity. Virology 143: 143–152

    PubMed  CAS  Google Scholar 

  • Hansen J, Billich S, Schulze T, Sukrow S, Moelling K (1988) Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibody. EMBO J 7: 1785–1791

    PubMed  CAS  Google Scholar 

  • Henderson LE, Sowder RC, Smythers G, Benveniste RE, Oroszlan S (1985) Purification and N-terminal amino acid sequence comparisons of structural proteins from retrovirus-D/Washington and Mason-Pfizer monkey virus. J Virol 55: 778–787

    PubMed  CAS  Google Scholar 

  • Henderson LE, Benveniste RE, Sowder R, Copeland TD, Schultz AM, Oroszlan S (1988a) Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne). J Virol 62: 2587–2595

    PubMed  CAS  Google Scholar 

  • Henderson LE, Copeland TD, Sowder RC, Schultz AM, Oroszlan S (1988b) Analysis of proteins and peptides purified from sucrose gradient banded HTLV-IH. In: Bolognesi D (ed) Human retroviruses, cancer and AIDS: approaches to prevention and therapy, Liss, New York, pp 135–147

    Google Scholar 

  • Hill RL (1965) Hydrolysis of proteins. Adv Protein Chem 20: 37–107

    PubMed  CAS  Google Scholar 

  • Hizi A, Henderson LE, Copeland TD, Sowder RC, Hixson CV, Oroszlan S (1987) Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal fremeshift site by protein sequencing. Proc Natl Acad Sci USA 84: 7041–7045

    PubMed  CAS  Google Scholar 

  • Hizi A, Henderson LE, Copeland TD, Sowder RC, Krutzsh HC, Oroszlan S (1989) Analysis of gag proteins from mouse mammary tumor virus. J Virol 63: 2543–2549

    PubMed  CAS  Google Scholar 

  • Ikuta K, Luftig RB (1986) Inhibition of cleavage of Moloney murine leukemia virus gag and env coded precursor polyproteins by cerulenin. Virology 154: 195–206

    PubMed  CAS  Google Scholar 

  • Jacks T, Varmus HE (1985) Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230: 1237–1242

    PubMed  CAS  Google Scholar 

  • Jacks T, Townsley K, Varmus HE, Majors J (1987) Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc Natl Acad Sci USA 84: 4298–4302

    PubMed  CAS  Google Scholar 

  • Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988a) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 280–283

    PubMed  CAS  Google Scholar 

  • Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988b) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55: 447–458

    PubMed  CAS  Google Scholar 

  • Jacobson MF, Baltimore D (1968) Polypeptide cleavages in the formation of poliovirus proteins. Proc Natl Acad Sci USA 61: 77–84

    PubMed  CAS  Google Scholar 

  • Jamjoom GA, Naso RB, Arlinghaus RB (1976) Selective decrease in the rate of cleavage of an intracellular precursor to Rauscher leukemai virus p30 by treatment of infected cells with Actinomycin D. J Virol 19: 1054–1072

    PubMed  CAS  Google Scholar 

  • Jamjoom GA, Naso RB Arlinghaus RB (1977) Further characterization of intracellular precursor polyproteins of Rauscher leukemia virus. Virology 78: 11–34

    PubMed  CAS  Google Scholar 

  • Katoh I, Yoshinaka Y, Rein A, Shibuya M, Odaka T, Oroszlan S (1985) Murine leukemia virus maturation: protease region required for conversion from “immature” to “mature” core form and for virus infectivity. Virology 145: 280–292

    PubMed  CAS  Google Scholar 

  • Katoh I, Yoshinaka Y, Luftig RB (1986) The effect of cerulenin on Moloney murine leukemia virus morphogenesis. Virus Res 5: 265–276

    PubMed  CAS  Google Scholar 

  • Katoh I, Yasunaga T, Ikawa Y, Yoshinaka Y (1987) Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 329: 654–656

    PubMed  CAS  Google Scholar 

  • Katz RA, Fu XD, Skalka AM, Leis J (1986) Avian retrovirus nucleocapsid protein, pp12, produced in Escherichia coli has biochemical properties identical to unphosphorylated viral protein. Gene 50: 361–369

    PubMed  CAS  Google Scholar 

  • Koch G, Richter D (eds) (1980) Biosynthesis modifications and processing of cellular and viral polyproteins. Academic, New York

    Google Scholar 

  • Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, Scolnick EM, Sigal IS (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci USA 85: 4686–4690

    PubMed  CAS  Google Scholar 

  • Königsberg W, Hill RJ (1962) The structure of human hemoglobin V. The digestion of the a chain of human hemoglobin with pepsin. J Biol Chem 237: 3157–3162

    PubMed  Google Scholar 

  • Konze-Thomas B, von der Helm K (1981) Proteolytic processing of avian and simian sarcoma and leukemia viral proteins. Hamatol Bluttransfus 26: 409–413

    CAS  Google Scholar 

  • Korant BD, Longberg-Holm KK (1981) Viral proteins and site-specific cleavage. Acta Biol Med Ger 40: 1481–1488

    PubMed  CAS  Google Scholar 

  • Kotier M, Katz RA, Danho W, Leis J, Skalka AM (1988a) Synthetic peptides as substrates and inhibitors of a retroviral protease. Proc Natl Acad Sci USA 85: 4185–4189

    Google Scholar 

  • Kotier M, Katz RA, Skalka AM (1988b) Activity of avian retroviral protease expressed in Escherichia coli. J Virol 62: 2696–2700

    Google Scholar 

  • Kotier M, Danho W, Katz RA, Leis J, Skalka AM (1989) Avian retroviral proteases and cellular aspartic proteases are distinguished by activities on peptide substrates. J Biol Chem 264: 3428–3435

    Google Scholar 

  • Kramer RA, Schaber MD, Skalka AM, Ganguly K, Wong-Staal F, Reddy EP (1986) HTLV-III gag protein is processed in yeast cells by the virus pol-protease. Science 231: 1580–1584

    PubMed  CAS  Google Scholar 

  • Kräusslich HG, Wimmer E (1988) Viral proteinases. Annu Rev Biochem 57: 701–754

    PubMed  Google Scholar 

  • Kräusslich HG, Schneider H, Zybarth G, Carter CA, Wimmer E (1988) Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli J Virol 62: 4393–4397

    PubMed  Google Scholar 

  • Kräusslich HG, Ingraham RH, Skoog MT, Wimmer E, Pallai PV, Carter CA (1989a) Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc Natl Acad Sci USA 86: 807–811

    PubMed  Google Scholar 

  • Kräusslich HG, Oroszlan S, Wimmer E (1989b) Viral proteinases as targets for Chemotherapy. Current communications in molecular biology. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Laprevotte I, Hampe A, Sherr CJ, Galibert F (1984) Nucleotide sequence of gag gene and gag-pol junction of feline leukemia virus. J Virol 50: 884–894

    PubMed  CAS  Google Scholar 

  • Le Grice SFJ, Mills J, Mous J (1988) Active site mutagenesis of the AIDS virus protease and its alleviation by trans complementation. EMBO J 7: 2547–2553

    PubMed  Google Scholar 

  • Leis J, Baltimore D, Bishop JM, Coffin J, Fleissner E, Goff SP, Oroszlan S, Robinson H, Skalka AM, Temin HM, Vogt V (1988) Standardized and simplified nomenclature for proteins common to all retroviruses. J. Virol 62: 1808–1809

    PubMed  CAS  Google Scholar 

  • Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842

    PubMed  CAS  Google Scholar 

  • Lightfoote MM, Coligan JE, Folks TM, Fauci AS, Martin MA, Venkatesan S (1986) Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus. J Virol 60: 771–775

    PubMed  CAS  Google Scholar 

  • Lillehoj EP, Salazar FHR, Mervis RJ, Raum MG, Chan HW, Ahmad N, Venkatesan S (1988) Purification and characterization of the putative gag-pol protease of human immunodeficiency virus. J Virol 62: 3053–3058

    PubMed  CAS  Google Scholar 

  • Loeb DD, Hutchinson CA III, Edgell MH, Farmerie WG, Swanstrom R (1989) Mutational analysis of human immunodeficiency virus type I protease suggests functional homology with aspartic proteinases. J Virol 63: 111–121

    PubMed  CAS  Google Scholar 

  • Louis JM, Wondrak EM, Copeland TD, Dale Smith CA, Mora PT, Oroszlan S (1989a) Chemical synthesis and expression of the HIV-I protease gene in E. coli Biochem Biophys Res Commun 159: 87–94

    PubMed  CAS  Google Scholar 

  • Louis JM, Smith CAD, Wondrak EM, Mora PT, Oroszlan S (1989b) Substitution mutations of the highly conserved arginine 87 of HIV-1 protease result in loss of proteolytic activity. Biochem Biophys Res Commun 164: 30–38

    PubMed  CAS  Google Scholar 

  • Lu AH, Soong MM, Wong PKY (1979) Maturation of Moloney murine leukemia virus. Virology 93:269–274

    PubMed  CAS  Google Scholar 

  • Luftig RB, Bu M, Ikuta K (1989) In: Kostka V (ed) Proteases of Retroviruses de Gruytr. Morphogenesis of retroviruses in the presence and absence of protease inhibitors. Berlin, pp 11–14

    Google Scholar 

  • Mains RE, Eipper BA, Glembotski CC, Dores RM (1983) Strategies for the biosynthesis of bioactive peptides. Trends Neurosci 4: 229–235

    Google Scholar 

  • Meek TD, Dayton BD, Metcalf BW, Dreyer GB, Strickler JE, Gorniak JG, Rosenberg M, Moore ML, Magaard VW, Debouck C (1989) Human immunodeficiency virus 1 protease expressed in Escherichia Coli behaves as a dimeric aspartic protease. Proc Natl Acad Sci USA 86: 1841–1845

    PubMed  CAS  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85: 2149–2154

    CAS  Google Scholar 

  • Mermer B, Malamy M, Coffin JM (1983) Rous sarcoma virus contains sequences which permit expression of the gag gene in Escherichia coli Mol Cell Biol 3: 1746–1758

    PubMed  CAS  Google Scholar 

  • Miller M, JaskĂłlski M, Rao JKM, Leis J, Wlodawer A (1989) Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337: 576–579

    PubMed  CAS  Google Scholar 

  • Mitchell AR, Erickson BW, Ryabstey MN, Hodges RS, Merrifield RB (1976) Tert-butoxycarbonyl-aminoacyl-4-(oxymethyl)-phenylacetamidomethyl-resin, a more acid-resistant support for solid-phase peptide synthesis. J Am Chem Soc 98: 7357–7362

    PubMed  CAS  Google Scholar 

  • Moelling K, Scott A, Dittmar KEJ, Owada M (1980) Effect of pl5-associated protease from an avian RNA tumor virus on avian virus-specific polyprotein precursors. J Virol 33: 680–688

    PubMed  CAS  Google Scholar 

  • Mous J, Heimer EP, LeGrice SFJ (1988) Processing protease and reverse transcriptase from HIV-1 polyprotein in E. coli J Virol 62: 1433–1436

    PubMed  CAS  Google Scholar 

  • Muesing MA, Smith DH, Cabradilla CD, Benton CV, Lasky LA, Capon DJ (1985) Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313: 450–458

    PubMed  CAS  Google Scholar 

  • Nam SH, Hatanaka M (1986) Identification of protease gene of human T-cell leukemia virus type I (HTLV-I) and its structural comparison. Biochem Biophys Res Commun 139: 129–135

    PubMed  CAS  Google Scholar 

  • Nam SH, Kidokoro M, Shida H, Hatanaka M (1988) Processing of gag precursor polyprotein of human T-cell leukemia virus type I by virus-encoded protease. J Virol 62: 3718–3728

    PubMed  CAS  Google Scholar 

  • Navia MA, Fitzgerald PMD, McKeever BM, Leu C-T, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337: 615–620

    PubMed  CAS  Google Scholar 

  • Nermut MV, Frank H, Schafer W (1972) Properties of mouse leukemia viruses. III. Electron microscopic appearance as revealed after conventional preparation techniques as well as freeze-drying and freeze-etching. Virology 49: 345–358

    PubMed  CAS  Google Scholar 

  • Nutt RF, Brady SF, Darke PL, Ciccarone TM, Colton CD, Nutt EM, Rodkey JA, Bennett CD, Waxman LH, Sigal IS, Anderson PS, Veber DF (1988) Chemical synthesis and enzymatic activity of a 99-residue peptide with a sequence proposed for the human immunodeficiency virus protease. Proc Natl Acad Sci USA 85: 7129–7133

    PubMed  CAS  Google Scholar 

  • Oppermann H, Bishop JM, Varmus HE, Levintow L (1977) A joint product of the genes gag and pol of avian sarcoma virus: a possible precursor of reverse transcriptase. Cell 12: 993–1005

    PubMed  CAS  Google Scholar 

  • Oroszlan S, Copeland TD (1985) Primary structure and processing of gag and env gene products of human T-cell leukemia viruses HTLV-ICR and HTLV-IATK. Curr Top Microbiol Immunol 115:221–233

    PubMed  CAS  Google Scholar 

  • Oroszlan S, Gilden RV (1979) Amino acid sequences of plant and animal viral proteins. In: Fraenkel-Conrat H, Wagner RW (eds) Comprehensive Virology. vol 13, Plenum, New York, pp 1–35

    Google Scholar 

  • Oroszlan S, Gilden RV (1980) Primary structure analysis of retrovirus proteins. In: Stephenson JR (ed) Molecular biology of RNA tumor viruses. Academic, New York, pp 299–344

    Google Scholar 

  • Oroszlan S, van Beveren C (1985) Appendix E: amino acid sequences of retroviral proteins. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA tumor viruses. Molecular biology of tumor viruses, 2nd edn. vol 2, Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 1209–1221

    Google Scholar 

  • Oroszlan S, Copeland TD, Summers MR, Smythers G, Guilden RV (1975) Amino acid sequence homology of mammalian type C RNA virus major internal proteins. J Biol Chem 250: 6232–6239

    PubMed  CAS  Google Scholar 

  • Oroszlan S, Henderson LE, Stephenson JR, Copeland TD, Long CW, Ihle JN, Gilden RV (1978) Amino- and Carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus. Proc Natl Acad Sci USA 75: 1404–1408

    PubMed  CAS  Google Scholar 

  • Oroszlan S, Sarngadharan MG, Copeland TD, Kalyanaraman VS, Gilden RV, Gallo RC (1982) Primary structure analysis of the major internal protein p24 of human type C T-cell leukemia virus. Proc Natl Acad Sci USA 79: 1291–1294

    PubMed  CAS  Google Scholar 

  • Oroszlan S, Copeland TD, Henderson LE (1987a) Human immunodeficiency virus protease. 3rd International Conference on AIDS, Washington, abstract M 9.3

    Google Scholar 

  • Oroszlan S, Henderson LE, Hizi A, Copeland TD (1987b) Retroviral genes and gene products: Control of expression. In: Lapis K, Eckhardt S (eds) Lectures and Symposia, 14th International Cancer Congress, Budapest 1986, vol 4, Karger, Basel, pp 243–250

    Google Scholar 

  • Pal R, Gallo RC, Sarngadharan MG (1988) Processing of the structural proteins of human immunodeficiency virus type 1 in the presence of monensin and cerulenin. Proc Natl Acad Sci USA 85: 9283–9286

    PubMed  CAS  Google Scholar 

  • Panet A, Baltimore D, Hanafusa T (1975) Quantitation of avian RNA tumor virus reverse transcriptase by radioimmunoassay. J Virol 16: 146–152

    PubMed  CAS  Google Scholar 

  • Pearl LH, Blundell T (1984) The active site of aspartic proteinases. FEBS Lett 174: 96–101

    PubMed  CAS  Google Scholar 

  • Pearl LH, Taylor WR (1987a) Sequence specificity of retroviral proteases. Nature 328: 482

    PubMed  CAS  Google Scholar 

  • Pearl LH, Taylor WR (1987b) A structural model for the retroviral proteases. Nature 329: 351–354

    PubMed  CAS  Google Scholar 

  • Pepinsky RB (1983) Localization of lipid-protein and protein-protein interactions within the murine retroviruses gag precursor by a novel peptide-mapping technique. J Biol Chem 258:11229–11235

    PubMed  CAS  Google Scholar 

  • Pepinsky RB, Cappiello D, Wilkowski C, Vogt VM (1980) Chemical cross-linking of proteins in avian sarcoma and leukemia viruses. Virology 102: 205–210

    PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Isolation of type C retrovirus particles from cultured and fresh lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77: 7415–7419

    PubMed  CAS  Google Scholar 

  • Popovic M, Sargadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224: 497–500

    PubMed  CAS  Google Scholar 

  • Priel E, Showalter SD, Roberts M, Yosef O, Segal S, Aboud M, Oroszlan S, Blair DG (1990) Topoisomerase I activity associated with human immunodeficiency virus (HIV) particles and equine infectious anemia virus core proteins. Virology (submitted)

    Google Scholar 

  • Ratner L, Haseltine W, Patarca R, Livak J, Starcich B, Josephs SF, Doran ER, Rafalski JA et al. (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313: 277–284

    PubMed  CAS  Google Scholar 

  • Rice NR, Stephens RM, Burny A, Gilden RV (1985) The gag and pol genes of bovine leukemia virus: nucleotide sequence and analysis. Virology 142: 357–377

    PubMed  CAS  Google Scholar 

  • Roberts MM, Oroszlan S (1989) The preparation and biochemical characterization of intact capsids of equine infectious anemia virus. Biochem Biophys Res Commun 160: 486–494

    PubMed  CAS  Google Scholar 

  • Sanchez-Pescador R, Power MD, Barr PJ, Steimer KS, Stempien MM, Brown-Shimer SL, Gee WW, Renard A et al. (1985) Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227: 484–492

    PubMed  CAS  Google Scholar 

  • Satake M, Luftig RB (1983) Comparative immunofluorescence of murine leukemia virus-derived membrane-associated antigens. Virology 124: 259–273

    PubMed  CAS  Google Scholar 

  • Sauer RT, Allen DW, Niall HD (1981) Amino acid sequence of pl5 from avian myeloblastosis virus complex. Biochemistry 20: 3784–3791

    PubMed  CAS  Google Scholar 

  • Schneider J, Kent SBH (1988) Enzymatic activity on a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell 54: 363–368

    PubMed  CAS  Google Scholar 

  • Schultz AM, Rein A (1985) Maturation of murine leukemia virus env proteins in the absence of other viral proteins. Virology 145: 335–339

    PubMed  CAS  Google Scholar 

  • Ĺ edlácek J. Strop P, Kaprálek F, Pecenka V, Kostka V, Trávnicek M, Riman J (1988) Processed enzymatically active protease (p15gag) of avian retrovirus obtained in an E. coli system expressing a recombinant precursor (Pr25lacΔgag). FBES Lett 237: 187–190

    Google Scholar 

  • Seelmeier S, Schmidt H, Turk V, von der Helm K (1988) Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci USA 85: 6612–6616

    PubMed  CAS  Google Scholar 

  • Seiki M, Hattori S, Hirayama Y, Yoshida M (1983) Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sei USA 80: 3618–3622

    CAS  Google Scholar 

  • Shealy DJ, Mosser AG, Rueckert RR (1980) Novel pl9-related protein in Rous-associated virus type 61: implications for avian gag gene order J Virol 34: 431–437

    CAS  Google Scholar 

  • Shields A, Witte ON, Rothenberg E, Baltimore D (1978) High frequency of an aberrant expression of Moloney murine leukemia virus in clonal infections. Cell 14: 601–609

    PubMed  CAS  Google Scholar 

  • Shimotohno K, Takahashi Y, Shimizu N, Gojobori T, Golde DW, Chen ISY, Miwa M, Sugimura T (1985) Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene. Proc Natl Acad Sci USA 82: 3101–3105

    PubMed  CAS  Google Scholar 

  • Skalka AM (1989) Retroviral proteases: first glimpse at the anatomy of a processing machine. Cell 56:911–913

    PubMed  CAS  Google Scholar 

  • Stephens RM, Casey JW, Rice NR (1986) Equine infectious anemia virus gag and pol genes: Relatedness to Visna and AIDS virus. Science 231: 589–594

    PubMed  CAS  Google Scholar 

  • Summers DF, Maizel JV (1968) Evidence for large precursor proteins in poliovirus synthesis. Proc Natl Acad Sci USA 59: 966–971

    PubMed  CAS  Google Scholar 

  • Toh H, Ono M, Saigo K, Miyata T (1985) Retroviral protease-like sequence in the yeast transposon Tyl. Nature 315: 691

    CAS  Google Scholar 

  • Veronese FD, Copeland TD, DeVico AL, Rahman R, Oroszlan S, Gallo RC, Sarngadharan MG (1986) Characterization of highly immunogenic p66/51 as the reverse transcriptase of HTLV-III/LAV. Science 231: 1289–1291

    CAS  Google Scholar 

  • Veronese FD, Copeland TD, Oroszlan S, Gallo RC, Sarngadharan MG (1988) Biochemical and immunological analysis of human immunodeficiency virus gag gene products p17 and p24. J Virol 62: 795–801

    PubMed  CAS  Google Scholar 

  • Vogt VM, Eisenman R, Diggelmann H (1975) Generation of avian myeloblastosis virus structural proteins by proteolytic cleavage of a precursor polypeptide. J Mol Biol 96: 471–493

    PubMed  CAS  Google Scholar 

  • Vogt VM, Wight A, Eisenman R (1979) In vitro cleavage of avian retrovirus gag proteins by viral protease pl5. Virology 98: 154–167

    PubMed  CAS  Google Scholar 

  • Von der Helm K (1977) Cleavage of Rous sarcoma viral polypeptide precursor into internal structural proteins in vitro involves viral protein p15. Proc Natl Acad Sci USA 74: 911–915

    PubMed  Google Scholar 

  • Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M (1985) Nucleotide sequence of the AIDS Virus, LAV. Cell 40: 9–17

    PubMed  CAS  Google Scholar 

  • Weber IT (1989) Structural alignment of retroviral protease sequences. Gene (in press)

    Google Scholar 

  • Weber IT, Miller M, Jaskolski M, Leis J, Skalka AM, Wlodawer A (1989) Molecular modelling of the HIV-1 protease and its substrate binding site. Science 243: 928–931

    PubMed  CAS  Google Scholar 

  • Wellink J, van Kammen A (1988) Proteases involved in the processing of viral polyproteins. Arch Virol 98: 1–26

    PubMed  CAS  Google Scholar 

  • Wills JW, Craven RC, Achacoso JA (1989) Creation and expression of myristylated forms of Rous sarcoma virus Gag protein in mammalian cells. J Virol 63: 4331–4343

    PubMed  CAS  Google Scholar 

  • Witte ON, Baltimore D (1978) Relationship of retrovirus polyprotein cleavages to virion maturation studied with temperature-sensitive murine leukemia virus mutants. J Virol 26: 750–761

    PubMed  CAS  Google Scholar 

  • Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SBH (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245: 616–621

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1977a) Murine leukemia virus morphogenesis: Cleavage of P70 in vitro can be accompanied by a shift from a concentrically coiled internal strand (“immature”) to a collapsed (“mature”) form of the virus core. Proc Natl Acad Sci USA 74: 3446–3450

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1977b) Partial characterization of a P70 proteolytic factor that is present in purified virions of Rauscher leukemia virus (RLV). Biochem Biophys Res Commun 76: 54–63

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1977c) Properties of a P70 proteolytic factor of murine leukemia viruses. Cell 12: 709–719

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1978) Morphological conversion of “immature” Rauscher leukaemia virus cores to a “mature” form after addition of the P65–70 (gag gene product proteolytic factor). J Gen Virol 40: 151–160

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1980) Physiochemical characterization and specificity of the murine leukaemia virus Pr65gag proteolytic factor. J Gen Virol 48: 329–340

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Luftig RB (1981) Inhibition of murine leukemia virus Pr65gag cleavage in vitro and in vivo by hypertonic medium. J Virol 37: 1066–1070

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Katoh I, Luftig RB (1984) Murine retrovirus Pr65gag forms a 130K dimer in the absence of disulfide reducing agents. Virology 136: 274–281

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S (1985a) Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci USA 82: 1618–1622

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S (1985b) Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. J Virol 55: 870–873

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Shames RB, Luftig RB, Smythers GW, Oroszlan S (1985c) In vitro cleavage of Pr65gag by the Moloney murine leukaemia virus proteolytic activity yields p30 whose N-terminal sequence is identical to virion p30. J Gen Virol 66: 379–383

    PubMed  CAS  Google Scholar 

  • Yoshinaka Y, Katoh I, Copeland TD, Smythers GW, Oroszlan S (1986) Bovine leukemia virus protease: purification, chemical analysis and in vitro processing of the gag-precursor polyproteins. J Virol 57: 826–832

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Oroszlan, S., Luftig, R.B. (1990). Retroviral Proteinases. In: Swanstrom, R., Vogt, P.K. (eds) Retroviruses. Current Topics in Microbiology and Immunology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75218-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75218-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75220-9

  • Online ISBN: 978-3-642-75218-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics