Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 46))

  • 225 Accesses

Abstract

The finite time probability measures of a one-dimensional cellular automaton are characterized using stochastic finite automata, which provides an analogy for probability measures to the theorem by Wolfram stating that the finite time sets are regular languages. The exact time evolution of the probability measure and the evolution of quantities measuring randomness and complexity are calculated in some examples. We also introduce a new approximation scheme for the time evolution of the probability measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Wolfram, “Computation Theory of Cellular Automata”, Comm. Math. Phys. 96 (1984) 15–57.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. L. P. Hurd, “Formal Language Characterization of CA Limit Sets”, Complex Systems, 1 (1987) 69–80.

    MathSciNet  MATH  Google Scholar 

  3. M. G. Nordahl, “Formal Languages and Finite CA”, Complex Systems, 3 (1989).

    Google Scholar 

  4. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Springer Lecture Notes in Mathematics 527.

    Google Scholar 

  5. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation (Addison-Wesley, Reading MA, 1979).

    MATH  Google Scholar 

  6. see e.g. proceedings from IEEE Structure in Complexity Theory.

    Google Scholar 

  7. M. P. Delest, “Generating Functions for Column-Convex Polyommoes”, Journal of Combinatorial Theory A48 (1988) 12–31.

    MathSciNet  Google Scholar 

  8. S. Wolfram, “Statistical Mechanics of CA”, Rev. Mod. Phys., 55 (1983) 601–644.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. H. Takahashi, “Undecidable Questions About the Maximal Invariant Set”, Information and Control, 33 (1977) 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Wolfram, “Universality and Complexity in CA”, Physica, 10D (1984) 1–35.

    MathSciNet  ADS  Google Scholar 

  11. M. G. Nordahl, “Limit Sets and Attractors of Class Two CA”, Goteborg preprint.

    Google Scholar 

  12. K. Lindgren and M. G. Nordahl, “Complexity Measures and CA”, Complex Systems 2 (1988) 409–440.

    MathSciNet  MATH  Google Scholar 

  13. B. Kitchens and S. Tuncel, “Finitary Measures for Subshifts of Finite Type and Sofie Systems”, Memoirs of the American Mathematical Society, 58 (1985) no. 338.

    MathSciNet  Google Scholar 

  14. D. Zambella and P. Grassberger, “Complexity of Forecasting in a Class of Simple Models”, Complex Systems 2 (1988) 269–303.

    MathSciNet  MATH  Google Scholar 

  15. R. Gallager, Information Theory and Reliable Communication, (John Wiley, NY, 1968).

    MATH  Google Scholar 

  16. B. Marcus, K. Petersen and S. Williams, “Transmission Rates and Factors of Markov Chains”, in Conference in Modern Analysis and Probability (AMS, Providence RI, 1984).

    Google Scholar 

  17. M. Nasu, preprint.

    Google Scholar 

  18. M. Li and P. Vitanyi, “Three Decades of Applied Kolmogorov Complexity”, in IEEE Structure in Complexity Theory 1988.

    Google Scholar 

  19. K. Lindgren, “Correlations and Random Information in CA”, Complex Systems, 1 (1987) 529–543.

    MathSciNet  MATH  Google Scholar 

  20. S. Wolfram, “Origins of Randomness in Physical Systems”, Phys. Rev. Lett. 55 (1985) 449–452.

    Article  MathSciNet  ADS  Google Scholar 

  21. A. C. Yao, “Theory and Applications of Trapdoor Functions”, in Proc. 23rd IEEE Symposium on the Foundations of Computer Science, (1982) 80–91.

    Google Scholar 

  22. M. Blum and S. Micali, “How to Construct Cryptographically Strong Sequences of Pseudo Random Bits”, in 23rd FOCS, (1982) 112–117.

    Google Scholar 

  23. A. V. Goldberg and M. Sipser, “Compression and Ranking”, Proc. 17th ACM Symposium on Theory of Computing, (1985) 440–448.

    Google Scholar 

  24. P. Grassberger, “Towards a Quantitative Theory of Self-Generated Complexity”, Int. J. Theor. Phys., 25 (1986) 907–938.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. A. Hubermann and T. Hogg, “Complexity and Adaptation”, Physica, 22D (1986) 376–384.

    Google Scholar 

  26. C. H. Bennett, “Dissipation, Information, Computational Complexity and the Definition of Organization”, in Emerging Syntheses in Science (Santa Fe Institute, 1985).

    Google Scholar 

  27. D. Angluin and C. H. Smith, “Inductive Inference: Theory and Methods”, ACM Computing Surveys, 15 (1983) 237–269.

    Article  MathSciNet  Google Scholar 

  28. M. G. Nordahl, in preparation.

    Google Scholar 

  29. H. A. Gutowitz, J. D. Victor and B. W. Knight, “Local Structure Theory for CA”, Physica, 28D (1987) 18–48.

    MathSciNet  ADS  Google Scholar 

  30. H. A. Gutowitz and J. D. Victor, “LST in More than One Dimension”, Complex Systems, 1 (1987) 57–68.

    MathSciNet  MATH  Google Scholar 

  31. H. A. Gutowitz, “Classification of CA According to Their Statistical Properties”, Los Alamos preprint.

    Google Scholar 

  32. M. G. Nordahl, to appear.

    Google Scholar 

  33. J. Rissanen, “Complexity of Strings in the Class of Markov Sources”, IEEE Transactions on Information Theory, IT-32 (1986) 526–532.

    Google Scholar 

  34. P. Cvitanovic, “Invariant Measurement of Strange Sets in Terms of Cycles”, Phys. Rev. Lett., 61 (1988) 2729–2732.

    Article  MathSciNet  ADS  Google Scholar 

  35. P. Grassberger, H. A. Gutowitz, M. G. Nordahl, work in progress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nordahl, M.G. (1989). Cellular Automata Probability Measures. In: Manneville, P., Boccara, N., Vichniac, G.Y., Bidaux, R. (eds) Cellular Automata and Modeling of Complex Physical Systems. Springer Proceedings in Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75259-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75259-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75261-2

  • Online ISBN: 978-3-642-75259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics