Skip to main content

Principles and Techniques of Laser Spectroscopy

  • Chapter
Perspectives in Modern Chemical Spectroscopy

Abstract

To understand the concepts of laser action, we first need to appreciate the nature of the stimulated emission process on which it is based. Molecules in excited states generally have very short decay lifetimes (often between 10−7s and 10−9s) and by releasing energy they rapidly undergo relaxation processes. In this way, they undergo transitions to more stable states of lower energy; there are many different mechanisms for the release of energy, some of which are radiative, in the sense that light is emitted, and some of which are non-radiative. However, although chemical distinctions can be made between different types of radiative decay such as fluorescence and phosphorescence (see Chap. 5), the essential physics is the same — photons are emitted which match the energy difference between the initially excited state and the final state involved in the transition. Since this kind of photon emission occurs without any external stimulus, it is referred to as spontaneous emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharp BL (1982) Chem. Brit 18: 342

    CAS  Google Scholar 

  2. Letokhov VS (1983) Nonlinear laser chemistry, Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Andrews DL (1986) Lasers in Chemistry, Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Thrush BA (1981) Acc. Chem. Res. 14: 116

    Article  CAS  Google Scholar 

  5. Hollas JM (1982) High resolution spectroscopy, Butterworths, London

    Google Scholar 

  6. Demtroder W (1982) Laser spectroscopy, Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Hurst GS (1987) Phil. Trans. Roy. Soc. Lond. A323: 155

    Google Scholar 

  8. Fang HL, Swofford RL (1983) In: Kliger DS (ed) Ultrasensitive laser spectroscopy, Academic, New York, p 176

    Google Scholar 

  9. Tarn AC (1983) In: Kliger DS (ed) Ultrasensitive Laser Spectroscopy, Academic, New York, p2

    Google Scholar 

  10. Travis JC, DeVoe JR (1981) In: Heiftje GM, Travis JC, Lytle FE (eds) Lasers in chemical analysis Humana, Clifton, p93

    Chapter  Google Scholar 

  11. Bitto H, Guyer DR, Polik WF, Moore CB (1986) Faraday Discuss. Chem. Soc. 82, Paper 8

    Google Scholar 

  12. McCoustra MRS, Pfab J (1987) Chem. Phys. Lett. 136: 231

    Article  CAS  Google Scholar 

  13. McCoustra MRS, Pfab J (1987) The relevance of N-nitroso compounds to human cancer: Exposure and mechanisms, IARC-WHO Scientific Publications, Lyons, France, p 228

    Google Scholar 

  14. Harris TD, Lytle FE: p369 in Ref. [8]

    Google Scholar 

  15. Weeks SJ, Winefordner JC: p 159 in Ref. [10]

    Google Scholar 

  16. Kachin SV, Smith BW, Winefordner JD (1985) Appl. Spec. 39: 587

    Article  CAS  Google Scholar 

  17. Wright JC: p 185 in Ref. [10]

    Google Scholar 

  18. Yeung ES: p273 in Ref. [10]

    Google Scholar 

  19. Strojny N, de Silva JAF: p225 in Ref. [10]

    Google Scholar 

  20. Rosasco GJ (1980) Adv. Infrared Raman Spec. 7: 223

    CAS  Google Scholar 

  21. Rousseau DL, Friedman JM, Wilson PF (1979) In: Weber A (ed) Raman spectroscopy of gases and liquids. Springer, Berlin, Heidelberg New York, p 203

    Chapter  Google Scholar 

  22. Esherick P, Owyoung A (1982) Adv. Infrared Raman Spec. 9: 130

    CAS  Google Scholar 

  23. Nibler JW, Knighten GV: p253 in Ref. [21]

    Google Scholar 

  24. Smalley RE, Wharton L, Levy DH (1977) Acc. Chem. Res. 10: 139

    Article  CAS  Google Scholar 

  25. Levy DH, Wharton L, Smalley RE (1977) In: Moore CB (ed) Chemical and biological applications of lasers vol 2, Academic, New York, p 1

    Google Scholar 

  26. Hayes JM (1987) Chem. Rev. 87: 745

    Article  CAS  Google Scholar 

  27. Parker DH: p234 in Ref. [8]

    Google Scholar 

  28. Lichtin DA, Zandee L, Bernstein RB: p 125 in Ref. [10]

    Google Scholar 

  29. Walter K, Boesl U, Schlag EW (1986) Int. J. Mass Spec. Ion Proc. 71: 309

    Article  CAS  Google Scholar 

  30. Boesl U, Grotemeyer J, Schlag EW (1987) Anal. Instrum. 16: 151

    Article  CAS  Google Scholar 

  31. Grotemeyer J, Schlag EW (1988) Angew. Chem. Int. Ed. Engl. 27: 447

    Article  Google Scholar 

  32. Singhal R, Ledingham K (1987) New Scientist, 116 (1588): 52

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrews, D.L., McCoustra, M.R.S. (1990). Principles and Techniques of Laser Spectroscopy. In: Andrews, D.L. (eds) Perspectives in Modern Chemical Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75456-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75456-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52218-8

  • Online ISBN: 978-3-642-75456-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics