Skip to main content

Comparative Physiology of Cutaneous Mechanoreceptors

  • Chapter
Comparative Aspects of Mechanoreceptor Systems

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 10))

Abstract

Until 1910, histological investigation of the skin had revealed a variety of structurally developed end organs in the skin, all of them connected to myelinated afferent nerve fibres. The function of these receptor structures had to remain a matter of speculation until it became possible to record electrophysiologically from identified single nerve fibres. Unitary recording techniques were pioneered by Adrian and Zottermann (1926). Adrian and Umrath (1929) were among the first to combine structure and function in their work on Pacinian corpuscles. Frankenhaeuser’s (1949) Lindblom’s (1965) and Tapper’s (1965) work perfected techniques linking structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian ED, Umrath K (1929) The impulse discharge from Pacinian corpuscles. J Physiol (Lond) 68:139–154

    CAS  Google Scholar 

  • Adrian ED, Zottermann Y (1926) The impulses produced by sensory endings. Part 2. The response from a single endorgan. J Physiol (Lond) 72:151–171

    Google Scholar 

  • Akoev GN, Adrianov GN (1989) Synaptic transmission in the mechano- and electroreceptors of the acousticolateral system. In: Autrum H, Ottoson D, Perl ER et al. Progress in Sensory Physiology, vol 9. Springer, Berlin Heidelberg New York, pp 53–95

    Google Scholar 

  • Anand A, Iggo A, Paintal AS (1979) Lability of granular vesicles in Merkel cells of the type I slowly adapting cutaneous receptors of the cat. J Physiol (Lond) 296:19–20P

    Google Scholar 

  • Anderson T, Bannister LH, Hamann W (1979) Comparative ultrastructure of touch corpuscles in the rabbit and the cat. J Physiol (Lond) 287:6–7P

    Google Scholar 

  • Andres KH (1966) Ueber die Feinstruktur der Rezeptoren an Sinushaaren. Z Zellforsch Mikrosk Anat 75:339–365

    Article  PubMed  CAS  Google Scholar 

  • Baumann KI, Hamann W, Leung (1986a) Mechanical properties of skin and responsiveness of slowly adapting type I mechanoreceptors in rats at different ages. J Physiol (Lond) 371:329–337

    CAS  Google Scholar 

  • Baumann KI, Cheng-Chew SI, Hamann W, Leung MS (1986b) Responsiveness and ultrastructure of slowly adapting type I cutaneous mechanoreceptors in vitamin A deficient rats. J Physiol (Lond) 371:339–349

    CAS  Google Scholar 

  • Baumann KI, Hamann W, Leung MS (1986c) Reduced responsiveness of touch (sa I) receptors in the cat following close arterial infusion of neomycin. Brain Res 377:160–162

    Article  PubMed  CAS  Google Scholar 

  • Baumann KI, Hamann W, Leung MS (1988) Responsiveness of slowly adapting cutaneous mechanoreceptors after close arterial infusion of neomycin in cats. Prog Brain Res 74:43–49

    Article  PubMed  CAS  Google Scholar 

  • Baumann KI, Hamann W, Leung MS (1990) Acute effects of neomycin on slowly adapting type I and type II cutaneous mechanoreceptors in the anaesthetized cat and rat. J Physiol (Lond) 425:527–544

    CAS  Google Scholar 

  • Bessou P, Burgess PR, Perl ER, Taylor CB (1971) Dynamic properties of mechanoreceptors with unmyelinated (C) fibres. J Neurophysiol 34:116–131

    PubMed  CAS  Google Scholar 

  • Brown AG, Iggo A (1963) The structure and function of cutaneous “touch corpuscles” after nerve crush. J Physiol (Lond) 165:28–29P

    Google Scholar 

  • Brown AG, Iggo A (1967) A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J Physiol (Lond) 193:70–733

    Google Scholar 

  • Burgess PR, Petit D, Warren R (1968) Receptor types in cat hairy skin supplied by myelinated fibers. J Neurophysiol 31:833–848

    PubMed  CAS  Google Scholar 

  • Burgess R, Mei J, Nickett RP, Horch KW, Ballinger CM, Poulos DA (1983) The neural signal for skin indentation depth. J Neurosci Res 3:1572–1585

    CAS  Google Scholar 

  • Calof AL, Jones RB, Roberts WJ (1981) Sympathetic modulation of mechanoreceptor sensitivity in frog skin (1981) J Physiol (Lond) 310:481–499

    CAS  Google Scholar 

  • Cash RM, Linden RWA (1982) Effects of sympathetic nerve stimulation on intra-oral mechanoreceptor activity in the cat. J Physiol (Lond) 329:451–463

    CAS  Google Scholar 

  • Cauna N (1962) Functional significance of the submicroscopical, histochemical and microscopical organization of the cutaneous receptor organs. Anat Anz 111 (Suppl 2):181–197

    Google Scholar 

  • Chambers MR, Andres KH, v. Duering M, Iggo A (1972) The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q J Exp Physiol 57:417–445

    CAS  Google Scholar 

  • Chen SY, Gerson S, Meyer J (1973) The fusion of Merkel cell granules with synapse-like structures. J Invest Dermatol 61:290–292

    Article  PubMed  CAS  Google Scholar 

  • Cooksey EJ, Findlater GS, Iggo A (1984) The response to mechanical stimulation of s.a.I receptors of cats and rats in the presence of calcium antagonists. J Physiol (Lond) 357:30P

    Google Scholar 

  • Darian-Smith I, Davidson I, Johnson KO (1980) Peripheral neural representation of spatial dimensions of a textured surface moving across the monkey’s finger pad. J Physiol (Lond) 309:135–146

    CAS  Google Scholar 

  • Diamond J, Mills LR, Mearow KM (1988) Evidence that the Merkel cell is not the transducer in the mechanosensory Merkel-cell-neurite complex. Prog Brain Res 74:51–56

    Article  PubMed  CAS  Google Scholar 

  • Douglas WW, Ritchie JM (1957) On excitation of non-medullated afferent fibres in the saphenous nerve, which signal touch. J Physiol (Lond) 139:385–399

    CAS  Google Scholar 

  • Ferrington DG, Rowe MJ (1980) Functional capacities of tactile afferent fibres in neonatal kittens. J Physiol (Lond) 307:335–353

    CAS  Google Scholar 

  • Fiekers JF (1983) Effects of aminoglycoside antibiotics, streptomycin and neomycin on neuromuscular transmission. 1. Presynaptic considerations. J Pharmacol Exp Ther 225:487–502

    PubMed  CAS  Google Scholar 

  • Fjaellbrandt N, Iggo A (1961) The effect of histamine, 5-hydroxytryptamine and acetylcholine on cutaneous afferent fibres. J Physiol (Lond) 156:570–590

    Google Scholar 

  • Frankenhaeuser B (1949) Impulses from a cutaneous receptor with slow adaptation and low mechanical threshold. Acta Physiol Scand 18:67–74

    Google Scholar 

  • Gardner EP, Palmer CI (1989) Simulation of motion on the skin. I. Receptive fields and temporal frequency coding by cutaneous mechanoreceptors of OPTACON pulses delivered to the hand. J Neurophysiol 62:1410–1436

    PubMed  CAS  Google Scholar 

  • Gardner EP, Palmer CI (1990) Simulation of motion on the skin. II. Mechanisms used by rapidly adapting cutaneous mechanoreceptors in the primate hand for spatiotemporal resolution and two-point discrimination. J Neurophysiol 63:841–859

    PubMed  CAS  Google Scholar 

  • Gentle MJ (1989) Cutaneous sensory afferents recorded from the nervous intermandibularis of Gallus gallus var. domesticus. J Comp Physiol A 164:763–774

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt KM (1974) The physiological basis of tactile sensibility in the beak of geese. J Comp Physiol 95:29–47

    Article  Google Scholar 

  • Gottschaldt KM, Lausmann S (1974) The peripheral morphological basis of tactile sensibility in the beak of geese. Cell Tissue Res 153:477–496

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1981) Merkel cell receptors: structure and transducer function. Science 214:183–186

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt KM, Vahle-Hinz C (1982) Evidence against transmitter function of met-enkephalin and chemosynaptic impulse generation in “Merkel cell” mechanoreceptors. Exp Brain Res 45:459–463

    Article  PubMed  CAS  Google Scholar 

  • Gottschaldt KM, Iggo A, Young DW (1973) Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol (Lond) 235:287–315

    CAS  Google Scholar 

  • Gottschaldt KM, Fruhstorfer H, Schmidt W, Kraft I (1982) Thermosensitivity and its possible fine-structural basis in mechanoreceptors in the beak skin of geese. J Comp Neurol 205:219–245

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE (1973) An electrophysiological investigation of the receptor apparatus of the duck’s bill. J Physiol (Lond) 229:151–164

    CAS  Google Scholar 

  • Hartschuh W, Weihe E (1988) Multiple messenger candidates and marker substances in the mammalian Merkel cell-axon complex: a light and electron microscopic immunohistochemical study. Prog Brain Res 74:181–187

    Article  PubMed  CAS  Google Scholar 

  • Hartschuh W, Weihe E, Buechler M, Helmstaedter GE, Feuerle GE, Forssmann WG (1979) Met-enkephalin-like immunoreactivity in Merkel cells. Cell Tissue Res 201:342–348

    Article  Google Scholar 

  • Heinbecker P, O’Leary JL, Bishop GH (1933) Nature and source of fibres contributing to the saphenous nerve in the cat. Am J Physiol 104:23–35

    Google Scholar 

  • Horch KW, Whitehorn D, Burgess PR (1974) Impulse generation in type I cutaneous mechanoreceptors. J Neurophysiol 37:267–281

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Kroese ABA (1983) Voltage-dependent interaction of dihydrostreptomycin with the transduction channels in bullfrog sensory hair cells. J Physiol (Lond) 345:66P

    Google Scholar 

  • Iggo A (1959) Cutaneous heat and cold receptors with slowly conducting C-afferent fibres. Q J Exp Physiol 44:362–370

    CAS  Google Scholar 

  • Iggo A (1960) Cutaneous mechanoreceptors with afferent C-fibres. J Physiol (Lond) 152:337–353

    CAS  Google Scholar 

  • Iggo A (1964) Temperature discrimination in the skin. Nature 204:481–483

    Article  PubMed  CAS  Google Scholar 

  • Iggo A (1982) Cutaneous sensory mechanisms. In: Barlow H, Molke D (eds) The senses text in the physiological sciences. Cambridge Univ Press, Cambridge, pp 369–408

    Google Scholar 

  • Iggo A, Findlater GS (1984) A review of Merkel cell mechanisms. In: Hamann W, Iggo A (eds) Sensory receptor mechanisms. World Scientific, Singapore, pp 117–132

    Google Scholar 

  • Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscles in hairy skin. J Physiol (Lond) 200:763–796

    CAS  Google Scholar 

  • Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol (Lond) 286:293–300

    Google Scholar 

  • Johansson RS, Vallbo AB (1983) Tactile sensory coding in the glabrous skin of the human hand. TINS 6:27–32

    Google Scholar 

  • Johansson RS, Vallbo AB, Westling (1980) Thresholds of mechanosensitive afferents in the human hand as measured with v. Frey hairs. Brain Res 184:343–351

    Google Scholar 

  • Kenton B, Kruger L, Woo M (1971) Two classes of slowly adapting mechanoreceptor fibres in reptile cutaneous nerve. J Physiol (Lond) 212:21–44

    CAS  Google Scholar 

  • LaMotte RH, Whitehouse J (1986) Tactile detection of a dot on a smooth surface: peripheral neural events. J Neurophysiol 56:1109–1128

    PubMed  CAS  Google Scholar 

  • Leung MS (1986) Responsiveness of s.a.I cutaneous mechanoreceptors during aging and in degenerative skin conditions. PhD Thesis, Chinese University of Hong Kong, Hong Kong

    Google Scholar 

  • Lindblom U (1965) Properties of touch receptors in distal glabrous skin of the monkey. J Neurophysiol 28:966–985

    PubMed  CAS  Google Scholar 

  • Llinas RR (1977) Calcium release and transmitter release in squid synapse. In: Cowan WM, Forendelli JA (eds) Society for neuroscience symposia vol II. Society for Neurosciences, Bethesda, pp 139–160

    Google Scholar 

  • Loewenstein R (1956) Modulation of cutaneous mechanoreceptors by sympathetic stimulation. J Physiol (Lond) 132:40–60

    CAS  Google Scholar 

  • Loewenstein WR, Altamirano-Orrego R (1956) Enhancement of activity in a Pacinian corpuscle by sympathomimetic agents. Nature 4545:1292–1293

    Article  Google Scholar 

  • Lynn B, Carpenter SE (1982) Primary afferent units from the hairy skin of the rat hind limb. Brain Res 218:29–43

    Article  Google Scholar 

  • Mearow KM, Diamond J (1988) Merkel cells and the mechanosensitivity of normal and regenerating nerves in Xenopus skin. Neuroscience 26:695–708

    Article  PubMed  CAS  Google Scholar 

  • Millard CL, Woolf CJ (1988) Sensory innervation of the hairs of the rat hindlimb: a light microscopic analysis. J Comp Neurol 277:183–194

    Article  PubMed  CAS  Google Scholar 

  • Munger BL, Ide C (1988) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1–34

    Article  PubMed  CAS  Google Scholar 

  • Necker R (1974) In: Proc Rheinisch-westphaelische Akademie der Wissenschaften, vol 53. Westdeutichev Verlag, p 134

    Google Scholar 

  • Nordin M (1990) Low threshold mechanosensitive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J Physiol (Lond) 426:229–240

    CAS  Google Scholar 

  • Ogawa H, Iggo A (1977) Dependence of the response characteristics of glabrous rapidly adapting units in the cat on the stratum corneum. Brain Res 126:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Katsushi M, Yamashita Y (1981a) Physiological characteristics of low threshold mechanoreceptor afferent units innervating frog skin. Q J Exp Physiol 66:105–116

    PubMed  CAS  Google Scholar 

  • Ogawa H, Morimoto K, Yamashita Y (1981b) Physiological characteristics of low threshold mechanoreceptor afferent units innervating frog skin. J Q Exp Physiol 66:105–116

    CAS  Google Scholar 

  • Pacitti EG (1988) Neuropharmacology of the s.a.I sensory receptor. PhD Thesis, Edinburgh University

    Google Scholar 

  • Pacitti EG, Findlater GS (1988) Calcium channel blockers and Merkel cells. Prog Brain Res 74:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pierce JP, Roberts WJ (1981) Sympathetically induced changes in the response of guard hair and type II receptors in the cat. J Physiol (Lond) 314:411–428

    CAS  Google Scholar 

  • Pinkus F (1905) Ueber Hautsinnesorgane neben dem menschlichen Haar (Haarscheiben) und ihre vergleichend-anatomische Bedeutung. Arch Mikrosk Anat 65:121–179

    Article  Google Scholar 

  • Proske U (1969) Vibration sensitive mechanoreceptors in snake skin. Exp Neurol 23:187–194

    Article  PubMed  CAS  Google Scholar 

  • Pubols BH (1982a) Factors affecting cutaneous mechanoreceptor response. I. Constant-force versus constant displacement stimulation. J Neurophysiol 47:515–529

    PubMed  Google Scholar 

  • Pubols BH (1982b) Factors affecting cutaneous mechanoreceptor response. II. Changes in mechanical properties of skin with repeated stimulation. J Neurophysiol 47:530–542

    PubMed  Google Scholar 

  • Pubols BH, Pubols LM (1983) Tactile receptor discharge and mechanical properties of glabrous skin. Fed Proc 42:2528–2535

    PubMed  Google Scholar 

  • Roberts WJ, Elardo SM, King KA (1985) Sympathetically induced changes in the responses on slowly adapting type I receptors in cat skin. Somatosens Res 3:223–236

    Article  Google Scholar 

  • Schiff JD (1974) Role of sympathetic innervation of the Pacinian corpuscle. J Gen Physiol 63:601–608

    Article  PubMed  CAS  Google Scholar 

  • Sinclair D (1981) Cutaneous sensation 1980. Anaesthesiol Intensive Care Med 9:163–173

    CAS  Google Scholar 

  • Smith KR Jr, Creech BJ (1967) Effects of pharmacological on the physiological response of hair discs. Exp Neurol 19:477–482

    Article  PubMed  CAS  Google Scholar 

  • Straile WE (I960) Sensory hair follicles in mammalian skin. Am J Anat 106:133–147

    Article  Google Scholar 

  • Tapper DN (1965) Stimulus-response relationships in the cutaneous slowly-adapting mechanoreceptor in hairy skin of the cat. Exp Neurol 13:364–385

    Article  PubMed  CAS  Google Scholar 

  • Tuckett RP, Horch KW, Burgess PR (1978) Response of cutaneous hair and field mechanoreceptors in cat to threshold stimuli. J Neurophysiol 41:138–149

    PubMed  CAS  Google Scholar 

  • Werner G, Mountcastle VB (1965) Neural activity in mechanoreceptive cutaneous afferents: stimulus response relations, Weber function and information transmission. J Neurophysiol 28:359–397

    PubMed  CAS  Google Scholar 

  • Yamashita Y, Ogawa H, Taniguchi K (1986) Differential effects of manganese and magnesium on two types of slowly adapting cutaneous mechanoreceptor afferent units in frogs. Pfluegers Arch Eur J Physiol 406:218–224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamann, W. (1992). Comparative Physiology of Cutaneous Mechanoreceptors. In: Ito, F. (eds) Comparative Aspects of Mechanoreceptor Systems. Advances in Comparative and Environmental Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76690-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76690-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76692-3

  • Online ISBN: 978-3-642-76690-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics