Skip to main content

Angiogenic Processes in the Pathogenesis of Human Coronary Atherosclerosis

  • Chapter
Recent Progress in Atherosclerosis Research

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 87))

Abstract

Intimai neovascularization, which represents the newly formed vasa vasorum, has been recognized in atherosclerotic plaques of human coronary arteries for many years (Winternitz et al. 1938; Barger et al. 1984; Kamat et al. 1987). Nevertheless, there are still several unresolved questions regarding the origin and pathogenesis of these newly formed blood vessels as well as their pathophysiologic significance in the progression and/or regression of atherosclerosis, and especially the development of its sequelae such as thrombi and intimal hemorrhage. It is well known that neovascularization is a ubiquitous and vital response in various physiologic and pathologic conditions such as embryonic development, the inflammatory-repair process, and the growth of solid cancer (Folkman 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assoian RK, Fleurdelys BE, Stevenson HC et al. (1987) Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 84:6020–6024

    Article  PubMed  CAS  Google Scholar 

  • Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ (1984) Hypothesis:vasa vasorum and neovascularization of human coronary arteries. N Engl J Med 310:175–177

    Article  PubMed  CAS  Google Scholar 

  • De Wood MA, Spores J, Notske R et al. (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    Article  Google Scholar 

  • Duguid JB, Robertson WB (1957) Mechanical factors in atherosclerosis. Lancet I:1205–1209

    Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Haudenschild CC, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 76:5217–5221

    Article  PubMed  CAS  Google Scholar 

  • Fryer JA, Myers PC, Appleberg M (1987) Carotid intraplaque hemorrhage:the significance of neovascularity. J Vasc Surg 6:341–349

    PubMed  CAS  Google Scholar 

  • Kamat BR, Galli SJ, Barger AC et al. (1987) Neovascularization and coronary atherosclerotic plaque:cinematographic localization and quantitative histologic analysis. Hum Pathol 18:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Knighton DR, Hunt TK, Scheuenstuhl H et al. (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221:1283–1285

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DA, Pircher R, Kryceve-Martinerie C (1984) Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol 121:184–188

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DA, Pircher R, Jullien P (1985) Conversion of a high molecular weight latent ß-TGF from chicken embryo fibroblasts into a low molecular weight active ß-TGF under acidic conditions. Biochem Biophys Res Commun 133:1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Linzbach AJ (1969) The anatomy and physiology of the vascular wall. In: Bader H (eds) Handbook of physiology, vol II. American Physiological Society, Williams and Wilkens, Baltimore pp 830–864

    Google Scholar 

  • Lyons RM, Keski-Oja J, Moses HL (1988) Proteolytic activation of latent transforming growth factor-ß from fibroblast-conditioned medium. J Cell Biol 106:1659–1665

    Article  PubMed  CAS  Google Scholar 

  • Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor ß1 by plasmin. J Cell Biol 110:1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Merwin JR, Newman W, Beall LD et al. (1991) Vascular cells respond differentially to transforming growth factors beta, and beta2 in vitro. Am J Pathol 138:37–51

    PubMed  CAS  Google Scholar 

  • Osborn GR (1963) The incubation period of coronary thrombosis. Butterworths, London

    Google Scholar 

  • Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50:170–186

    Google Scholar 

  • van der Wal AC, Das PK, van der Berg DB et al. (1989) Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 61:166–170

    PubMed  Google Scholar 

  • Vincent GM, Anderson JL, Marshall HW (1983) Coronary spasm producing coronary thrombosis and myocardial infarction. N Engl J Med 309:220–223

    Article  PubMed  CAS  Google Scholar 

  • Wahl SM, Hunt DA, Wakefield LM et al. (1987) Transforming growth factor type induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA 84:5788–5792

    Article  PubMed  CAS  Google Scholar 

  • Wakefield LM, Smith DM, Masui C et al. (1987) Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol 105:965–975

    Article  PubMed  CAS  Google Scholar 

  • Winternitz MC, Thomas RM, Le Compte PM (1938) The biology of atherosclerosis. Charles C Thomas, Springfield I11

    Google Scholar 

  • Wolinsky H, Glagov S (1987) Nature of species differences in the medial distribution of aortic vasa vasorum in animals. Circ Res 20:409–421

    Google Scholar 

  • Yasunaga C, Nakashima Y, Sueishi K (1989) A role of fibrinolytic activity in angiogenesis:quantitative assay using in vitro method. Lab Invest 61:698–704

    PubMed  CAS  Google Scholar 

  • Zemplenyi T, Crawford DW, Cole MA (1989) Adaptation to arterial wall hypoxia demonstrated in vivo with oxygen microcathodes. Atherosclerosis 76:173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sueishi, K., Kumamoto, M., Sakuda, H., Tanaka, K. (1993). Angiogenic Processes in the Pathogenesis of Human Coronary Atherosclerosis. In: Roessner, A., Vollmer, E. (eds) Recent Progress in Atherosclerosis Research. Current Topics in Pathology, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76849-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76849-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76851-4

  • Online ISBN: 978-3-642-76849-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics