Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

The blood-brain barrier (BBB) at cerebral capillaries consists of a continuous layer of endothelial cells connected by tight junctions (zonulae occludens). The capillary wall lacks water-filled channels of suitable size for aqueous diffusion (except for water itself), and the endothelial cell membranes lack carrier systems of suitable affinity for mediated transport of most drugs [with notable exceptions, such as l-dihydroxyphenylalanine (l-DOPA), melphalan; see below]. Also, it is unlikely that vesicular transport plays a significant role in solute transfer across the BBB (Rapoport and Robinson 1986). Therefore, most drugs pass between blood and brain extracellular fluid via the lipid membranes of the endothelial cells. To do so, they first must leave the aqueous medium of the blood, then pass into the membrane lipid, diffuse across the membrane, enter and diffuse across the endothelial cell cytoplasm, enter and diffuse across the abluminal membrane, and finally enter the aqueous medium on the other side. Alternatively, the drug could diffuse around the circumference of the endothelial cell via tight junctions and interendothelial cell gaps, thereby bypassing the intracellular and transmembrane diffusion steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BUI:

Brain uptake index

AIB:

?-Aminoisobutyric acid

E:

Extraction fraction

BBB:

Blood-brain barrier

L-DOPA:

L-dihydroxphenylalanine

BSP:

Sulfobromophthalein

PA:

Permeability-surface area product

BTB:

Blood-tumor barrier

References

  • Armstrong BK, Robinson PJ, Rapoport SI (1987) Size-dependent blood-brain barrier opening demonstrated with [14-C]sucrose and a 200000-Da [3-H]dextran. Exp Neurol 97:686–696

    Article  CAS  PubMed  Google Scholar 

  • Armstrong BK, Smith QR, Rapoport SI, Strohalm J, Kopecek J, Duncan R (1989) Osmotic opening of the blood-brain barrier permeability to n-(2-hydroxypropyl)-methacrylamide copolymers. Effect of polymer Mw, charge and hydrophobicity. J Controlled Release 10:27–35

    Article  CAS  Google Scholar 

  • Ashbrook J, Spector AA, Santos EC, Fletcher JE (1975) Long chain fatty acid binding to human plasma albumin. J Biol Chem 250:2333–2338

    CAS  PubMed  Google Scholar 

  • Baker KJ, Bradley SE (1966) Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J Clin Invest 43:281–287

    Article  CAS  Google Scholar 

  • Bass L, Pond SM (1988) The puzzle of rates of cellular uptake of protein-bound ligands. In: Pecile A, Rescigno A (eds) Pharmacokinetics. Plenum, New York

    Google Scholar 

  • Blasberg RG, Groothuis DR (1986) Chemotherapy of brain tumors: physiological and pharmacokinetic considerations. Semin Oncol 13:70–82

    CAS  PubMed  Google Scholar 

  • Brightman MW, Hori M, Rapoport SI, Reese TS, Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–326

    Article  CAS  PubMed  Google Scholar 

  • Brodersen R (1974) Competitive binding of bilirubin and drugs to human serumalbumin studied by enzymatic oxidation. J Clin Invest 54:1353

    Article  CAS  PubMed  Google Scholar 

  • Curry FE (1984) Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds) Handbook of Physiology, Cardiovascular system, IV. American Physiological Society, Bethesda, pp 309–374

    Google Scholar 

  • Deen WM, Satvat B, Jamieson JM (1980) Theoretical model for glomerular filtration of charged solutes. Am J Physiol 238:F126–F139

    CAS  PubMed  Google Scholar 

  • Dorvini-Zis K, Sato M, Goping G, Rapoport SI, Brightman M (1983) Ionic lanthanum passage across cerebral endothelium exposed to hyperosmotic arabinose. Acta Neuropathol (Berl) 60:49–60

    Article  Google Scholar 

  • Faerch T, Jacobsen J (1975) Determination of association and dissociation rate constants for bilirubin-bovine serum albumin. Arch Biochem Biophys 168: 351–357

    Article  CAS  PubMed  Google Scholar 

  • Faxen H (1959) About T. Bohlin’s paper: on the drag of rigid spheres moving in a viscous liquid inside cylindrical tubes. Kolloidnyi Zh 167:146

    Article  Google Scholar 

  • Fenstermacher JD (1989) Pharmacology of the blood-brain barier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1, Basic science aspects. Plenum, New York, pp 137–155

    Chapter  Google Scholar 

  • Fenstermacher JD, Johnson J A (1966) Filtration and reflection coefficients of the rabbit blood-brain barrier. Am J Physiol 211:341–346

    CAS  PubMed  Google Scholar 

  • Fenstermacher JD, Rapoport SI (1984) Blood-brain barrier. In: Renkin EM, Michel CC (eds) Handbook of Physiology, Cardiovascular system IV. American Physiological Society, Bethesda, pp 969–1000

    Google Scholar 

  • Fleischer AB, Shurmantine WO, Luxon BA, Forker EL (1986) Palmitate uptake by hepatocyte monolayers. J Clin Invest 77:964–970

    Article  CAS  PubMed  Google Scholar 

  • Forker EL, Luxon BA (1981) Albumin helps mediate removal of taurocholate by rat liver. J Clin Invest 67:1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Greig NH (1989) Drug delivery to the brain by blood-brain barrier circumvention and drug modification. In: Implications of the blood-brain barrier and its manipulation, vol 1, Basic science aspects. Plenum, New York, pp 311–367

    Chapter  Google Scholar 

  • Greig NH, Momma S, Sweeney D et al. (1987) Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res 47:1571–1576

    CAS  PubMed  Google Scholar 

  • Greig NH, Soncrant TT, Umesha Shetty H, Momma S, Smith QR, Rapoport SI (1991) Brain uptakes and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol (in press)

    Google Scholar 

  • Hiesiger EM, Voorhies RM, Basler GA, Lipschutz LE, Posner JB, Shapiro WR (1986) Opening the blood-brain and blood-tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow. Ann Neurol 19:50–59

    Article  CAS  PubMed  Google Scholar 

  • Lanman RC, Burton JA, Schanker LS (1971) Diffusion coefficients of some 14-C labeled saccharides of biological interest. Life Sci 10:803–811

    Article  CAS  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    Article  CAS  PubMed  Google Scholar 

  • Levine RL (1979) Bilirubin: worked out years ago? Pediatrics 64:380–385

    CAS  PubMed  Google Scholar 

  • Levine RL, Fredericks W, Rapoport SI (1982) Entry of bilirubin into the brain due to opening of the blood-brain barrier. Pediatrics 69:255–259

    CAS  PubMed  Google Scholar 

  • Levitan H, Ziylan YZ, Smith QR et al. (1984) Brain uptake of food dye, erythrosine B, prevented by plasma protein binding. Brain Res 322:131–134

    Article  CAS  PubMed  Google Scholar 

  • MacKichan J J (1984) Pharmacokinetic consequences of drug displacement from blood and tissue proteins. Clin Pharmacokinet 9 [Suppl 1] 8:32–41

    Google Scholar 

  • Moller WD, Wolschendorf K (1978) Dependence of cerebral blood flow on age. Eur Neurol 17, 276–279

    Article  CAS  PubMed  Google Scholar 

  • Nagy Z, Pappius HM, Mathieson G, Huttner I (1979) Opening of tight junctions in cerebral endothelium. I. Effect of hyperosmolar mannitol infused through the internal carotid artery. J Comp Neurol 185:569–578

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA, Dahlborg SA (1989) Blood-brain barrier disruption in the treatment of brain tumors. Clinical implications. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 2, Clinical aspects. Plenum, New York, pp 195–261

    Chapter  Google Scholar 

  • Neuwelt EA, Frenkel EP, Diehl J, Vu LH, Rapoport SI, Hill S (1980) Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7:44–52

    Article  CAS  PubMed  Google Scholar 

  • Oldendorf WH (1974) Lipid solubility and drug penetration of the blood-brain barrier. Proc Soc Exp Biol Med 147:813–816

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Landaw EM (1984) Tracer kinetic model of blood-brain barrier transport of plasma protein bound ligands. Empiric testing of the free hormone hypothesis. J Clin Invest 74:745–752

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Mietus LJ (1980) Palmitate and cholesterol transport through the blood-brain barrier. J Neurochem 34:463–466

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI (1970) Effect of concentrated solutions on blood-brain barrier. Am J Physiol 219:270–274

    CAS  PubMed  Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven, New York

    Google Scholar 

  • Rapoport SI (1983) Reversible opening of the blood-brain barrier for experimental and therapeutic purposes. In: Levine RL, Maisels MJ (eds) Hyperbilirubinemia in the newborn. Report of the eighty-fifth Ross conference on pediatric research. Ross Laboratories, Columbus, pp 116–124

    Google Scholar 

  • Rapoport SI (1988) Osmotic opening of the blood-brain barrier. Ann Neurol 24:677–679

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI (1991) Osmotic opening of the brain-tumor barrier. J Neurosurg (in press)

    Google Scholar 

  • Rapoport SI, Levitan H (1974) Neurotoxicity of X-ray contrast media: relation to lipid solubility and blood-brain barrier permeability. AJR 122:186–193

    CAS  Google Scholar 

  • Rapoport SI, Robinson PJ (1986) Tight-junctional modification as the basis of osmotic opening of the blood-brain barrier. Ann NY Acad Sci 481:250–267

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Robinson PJ (1990) A therapeutic role for osmotic opening of the blood-brain barrier. Re-evaluation of literature and of importance of source-sink relations between brain and tumor. In: Johansson BB, Owman C, Widner H (eds) Pathophysiology of the blood-brain barrier: long-term consequences of barrier dysfunction for the brain. Elsevier, Amsterdam, pp 167–181

    Google Scholar 

  • Rapoport SI, Thompson HK (1973) Osmotic opening of the blood-brain barrier in the monkey without associated neurological deficits (Abstr). Science 180:971

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Hori M, Klatzo I (1972) Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223:323–331

    CAS  PubMed  Google Scholar 

  • Rapoport SI, Ohno K, Pettigrew KD (1979) Drug entry into brain. Brain Res 172:354–359

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Fredericks WR, Ohno K, Pettigrew KD (1980) Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol 238:R421–R431

    CAS  PubMed  Google Scholar 

  • Robinson PJ (1987) Facilitation of drug entry into brain by osmotic opening of the blood-brain barrier. Clin Exp Pharmacol Physiol 14:887–901

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJ, Rapoport SI (1986) Kinetics of protein binding determine rates of uptake of drugs by brain. Am J Physiol 351:R1212–R1220

    Google Scholar 

  • Robinson PJ, Rapoport SI (1987a) Size selectivity of blood-brain barrier permeability at various times after osmotic opening. Am J Physiol 253:R459–R466

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Rapoport SI (1987b) Binding effect of albumin on uptake of bilirubin by brain. Pediatrics 79:553–558

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Rapoport SI (1990) Model for drug uptake by brain tumors: effects of osmotic treatment and of diffusion in brain. J Cereb Blood Flow Metab 10:153–161

    Article  CAS  PubMed  Google Scholar 

  • Silverman WA, Anderson DH, Blanc WA et al. (1956) A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. Pediatrics 18:614

    PubMed  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillaries to small heme peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    Article  CAS  PubMed  Google Scholar 

  • Smith FG, Deen WM (1980) Electrostatic double-layer interactions for spherical colloids in cylindrical pores. J Colloid Interface Sci 78:444–465

    Article  CAS  Google Scholar 

  • Svenson A, Holmer E, Andersson L-O (1974) A new method for the measurement of dissociation rates for complexes between small ligands and proteins as applied to the palmitate and bilirubin complexes with serum albumin. Biochim Biophys Acta 342:54–59

    CAS  PubMed  Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    CAS  PubMed  Google Scholar 

  • Wade LA, Katzman R (1975) Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25:837–842

    Article  CAS  PubMed  Google Scholar 

  • Weisiger RA, Gollan J, Ockner R (1981) Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science 211:1048

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson GR, Shand DG (1975) Commentary. A physiologic approach to hepatic drug clearance. Clin Pharmacol Ther 18:377–390

    CAS  PubMed  Google Scholar 

  • Wosilait WD, Soler-Argilaga C, Nagy P (1976) A theoretical analysis of the binding of palmitate by human serum albumin

    Google Scholar 

  • Ziylan YZ, Robinson PJ, Rapoport SI (1983) Differential blood-brain barrier permeabilities to 14-C sucrose and 3-H inulin after osmotic opening in the rat. Exp Neurol 79:845–857

    Article  CAS  PubMed  Google Scholar 

  • Ziylan YZ, Robinson PJ, Rapoport SI (1984) Blood-brain permeability to sucrose and dextran after osmotic opening. Am J Physiol 247:R634–R638

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, P.J., Rapoport, S.I. (1992). Transport of Drugs. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics