Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

In vertebrate brains, either fixed in aldehydes directly or rapidly frozen first and then substituted with organic solvent before fixation at low temperatures, tracer molecules that had been infused intravascularly are prevented from reaching the interstitial fluid (IF) of the central nervous system (CNS). This barrier to the passage of hydrophilic solutes is due to the inability of the molecules to pass through zonular or circumferential junctions between adjacent endothelial cells. The second basis for the barrier is the inability of the pits or caveolae of the endothelial cells to transfer the molecules across the endothelium (Reese and Karnovsky 1967; Brightman and Reese 1969). Unlike the mammal, some of the pial vessels in the anuran brain are capillaries. Consisting as they do of one cell layer, the endothelium, these pial vessels of the frog can be rapidly frozen. As the depth of rapid freezing that is free of ice-crystal artefact is only about 15–30 μm, the tunica media of arterioles or venules would be preserved but not the underlying endothelium. For this reason, the frog was selected to assess the possible artefacts that could be introduced by primary fixation in aldehydes. Another constraint of the rapid-freeze method is that tracers such as horseradish peroxidase (HRP), the demonstration of which depends on its enzymatic activity, cannot be used at such low temperatures. Instead, a molecule such as ferritin (M r 950 000) is infused into the heart of normal frogs and those in which the blood-cerebrospinal fluid (CSF) barrier is opened by the topical application to the pial surface 3 M urea (Nagy et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APC:

Antigen presenting cell

BBB:

Blood-brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CVO:

Circumventricular organ

EAE:

Experimental allergic encephalomyelitis

IF:

Interstial fluid

HRP:

Horseradish peroxidase

MHC:

Major histocompatibility complex

PDGF:

Platelet-derived growth factor

PMN:

Polymorphonuclear leucocyte

R :

Electrical resistance

SCG:

Superior cervical ganglion

References

  • Abbott NJ, ichon J, Lane NJ (1977) Primitive forms of potassium homeostasis: observations on crustacean central nervous system with implications for bertebrage brain. Exp Eye Res [Suppl] 25:259–271

    Article  PubMed  CAS  Google Scholar 

  • Abbott NJ, Lane NJ, Bundgaard M (1986) The blood-brain interface in invertebrates. Ann NY Acad Sci 481:20–42

    Article  PubMed  CAS  Google Scholar 

  • Arthur FE, Shivers RR, Bowman PD (1987) Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev Brain Res 36:155–159

    Article  Google Scholar 

  • Balin BJ, Broadwell RD (1988) Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I. Choroid plexus and the blood- cerebrospinal fluid barrier. J Neurocytol 17:809–826

    Article  PubMed  CAS  Google Scholar 

  • Balin BJ, Broadwell RD, Salcman M, El-Kalliny M (1986) Avenues of entry of peripherally administered protein to the CNS in mouse, rat, and squirrel monkey. J Comp Neurol 251:260–280

    Article  PubMed  CAS  Google Scholar 

  • Balin BJ, Broadwell RD, Salcman M (1987) Tubular profiles do not form transendothelial channels through the blood-brain barrier. J Neurocytol 16:721–735

    Article  PubMed  CAS  Google Scholar 

  • Barker CF, Billingham RE (1977) Immunologically privileged sites. In: Kunkel HG, Dixon FJ (eds) Advances in immunology. Academic, New York, pp 1–54

    Google Scholar 

  • Billiau A (1981) Interferon therapy - pharmacokinetic and pharmacological aspects. Arch Virol 67:121–133

    Article  PubMed  CAS  Google Scholar 

  • Bodenheimer TS, Brightman MW (1968) A blood-brain barrier to peroxidase in capillaries surrounded by perivascular spaces. Am J Anat 122:249–267

    Article  PubMed  CAS  Google Scholar 

  • Bouldin TW, Krigman MR (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Res 99:444–448

    Article  PubMed  CAS  Google Scholar 

  • Bressler J, Grotendorst GR, Leviov C, Hjelmaland LM (1985) Chemotaxis of rat brain astrocytes to platelet derived growth factor. Brain Res 344:249–254

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW (1977) Morphology of blood-brain barrier interfaces. Exp Eye Res 25:1–25

    Article  PubMed  Google Scholar 

  • Brightman MW (1989) The anatomic basis of the blood-brain barrier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1. Plenum, New York, pp 53–83

    Chapter  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS, Olsson Y, Klatzo I (1971) Morphological aspects of the blood-brain barrier to peroxidase in elasmobranchs. Prog Neuropathol 1:146–161

    Google Scholar 

  • Brightman MW, Hori M, Rapoport SI, Reese TS, Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–326

    Article  PubMed  CAS  Google Scholar 

  • Broadwell RD (1988) Addressing the absence of a blood-brain barrier within transplanted brain tissue. Science 241:473–474

    Article  PubMed  CAS  Google Scholar 

  • Broadwell RD (1989) Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol 79:117–128

    Article  PubMed  CAS  Google Scholar 

  • Broadwell RD, Brightman, MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166:257–284

    Article  PubMed  CAS  Google Scholar 

  • Broadwell RD, Balin BJ, Salcman M (1987) Polarity of the blood-brain barrier to the endocytosis of the exogenous protein. Wiss Z Karl-Marx-Univleipe 36: 170–174

    Google Scholar 

  • Broadwell RD, Charlton HM, Ganong WF, Salcman M, Sofroniew M (1989) Allografts of CNS tissue possess a blood-brain barrier. I. Grafts of medial preoptic area in hypogonadal mice. Exp Neurol 105:135–151

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Cserr HF (1981a) A glial blood-brain barrier in elasmobranchs. Brain Res 226:61–73

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Cserr H (1981b) Impermeability of hagfish cerebral capillaries to radiolabeled polyethylene glycols and to microperoxidase. Brain Res 206:71–81

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Cserr H, Murray M (1979a) Impermeability of hagfish cerebral capillaries to horseradish peroxidase. Cell Tissue Res 198:65–77

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Frokjaer-Jensen J, Crone C (1979b) Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci USA 76:6439–6442

    Article  PubMed  CAS  Google Scholar 

  • Clough G, Michel CC (1981) The role of vesicles in the transport of ferritin through frog endothelium. J Physiol (Lond) 315:127–142

    CAS  Google Scholar 

  • Clough G, Michel CC (1988) Quantitative comparisons of hydraulic permeability and endothelial intercellular cleft dimensions in single frog capillaries. J Physiol (Lond) 405:563–576

    CAS  Google Scholar 

  • Coomber BL, Stewart PA (1988) Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable microvessels. Anat Rec 215:256–261

    Article  Google Scholar 

  • Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, Bundgaard M (1984) Blood-brain interfaces in vertebrates: a comparative approach. Am J Physiol 246:R277-R288

    PubMed  CAS  Google Scholar 

  • Cserr HR (1980) Convection of brain interstitial fluid. In: Kovach AGB, Hamar J, Szabb L (eds) Cardiovascular physiology microcirculation and capillary exchange. Proceedings of the 28th congress of physiological sciences, Budapest. Pergamon, New York, pp 337–341

    Google Scholar 

  • Dehouck MP, Meresse S, Delorme P, Fruchart J-C, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R, Thurauf N, Kalweit P (1983) Surface charges associated with brain capillaries. II. In vivo studies on the role of molecular charge in endothelial permeability. J Ultrastruct Res 84:111–119

    Article  PubMed  CAS  Google Scholar 

  • Faustmann PM, Dermietzel R (1985) Extravasation of polymorphonuclear leukocytes from the cerebral microvaculature. Cell Tissue Res 242:399–407

    Article  PubMed  CAS  Google Scholar 

  • Feder N (1971) An ultrastructural tracer of low molecular weight. J Cell Biol 51:339–343

    Article  PubMed  CAS  Google Scholar 

  • Frokjaer-Jensen J (1983) The plasmalemmal vesicular system in capillary endothelium. Prog Appl Microcirc 1:17–34

    Google Scholar 

  • Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD (1986) Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain. Blood Vessels 23:261–270

    PubMed  CAS  Google Scholar 

  • Gudeman DM, Nelson SR, Merisko EM (1987) Protein secretion by choroid plexus: isolated apical fragments synthesize proteins in vitro. Tissue Cell 19:101–109

    Article  PubMed  CAS  Google Scholar 

  • Gudeman DM, Brightman MW, Merisko EM, Merrill CR (1989) Release from live choroid plexus of apical fragments and electrophoretic characterization of their synthetic products. J Neurosci Res 24:184–191

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto PH (1972) Intracellular channels as a route for protein passage in the capillary endothelium of the shark brain. Am J Anat 134:41–58

    Article  PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain properties in endothelial cells. Nature 325:253–257

    Article  PubMed  CAS  Google Scholar 

  • Lane JC (1981) Invertebrate neuroglia-junctional structure and development. J Exp Biol 95:7–33

    Google Scholar 

  • Lane NJ, Treherne JE (1972) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tissue Cell 4:427–436

    Article  PubMed  CAS  Google Scholar 

  • Latker CH, Lynch KI, Rapoport SI (1986) The morphology of pial vessels of the frog preserved by rapid freezing and freeze substitution. Brain Res 375:186–192

    Article  PubMed  CAS  Google Scholar 

  • Lind RW, Swanson LW, Ganton D (1986) Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res 321:209–215

    Article  Google Scholar 

  • Lossinsky AS, Garcia GH, Iwanowski L, Lightfoot WE (1979) New ultrastructural evidence for a protein transport system in endothelial cells of gerbil brains. Acta Neuropathol (Berl) 47:105–110

    Article  CAS  Google Scholar 

  • Martinez-Palomo A, Erlij D (1975) Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci USA 72:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • McGuire PG, Twietmeyer TA (1983) Morphology of rapidly frozen endothelial cells. Circ Res 53:424–429

    PubMed  CAS  Google Scholar 

  • Meresse S, Dehouck MP, Delorme PM, Bensaid JP, Tauber C, Delbart C, Fruchart JC, Cecchelli R (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem 53:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Minakawa T, Bready J, Berliner J, Fisher M, Cancilla P (1991) In vitro interaction of astrocytes and pericytes with capillary - like tubular structures of brain micro vessel endothelium. In: Abbott J, Lieberman EM, Raff M (eds) Glial- neuronal interaction. NY Acad Sci (in press)

    Google Scholar 

  • Møllgård K, Saunders NR (1975) Complex tight junctions of epithelial and of endothelial cells in early foetal brain. J Neurocytol 4:453–468

    Article  Google Scholar 

  • Møllgård K, Balslev Y, Lauritzen B, Saunders NR (1987) Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier. J Neurocytol 16:433–444

    Article  PubMed  Google Scholar 

  • Nagy Z, Pettigrew KD, Meiselman S, Brightman MW (1988) Cerebral vessels cyrofixed after hyperosmosis or cold injury in normothermic and hypothemic frogs. Brain Res 440:315–327

    Article  PubMed  CAS  Google Scholar 

  • Naparstek Y, Cohen IR, Fuks Z, Vlodavsky I (1984) Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 310:241–244

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1961) Blood capillaries of the heart and other organs. Circulation 24:368–384

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Yang J, Eisenbers J, Mietus LJ (1986) Antibodies to blood-brain barrier bind selectively to brain capillary endothelial lateral membranes and to a 46K protein. J Cereb Blood Flow Metab 6:203–211

    Article  PubMed  CAS  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  • Renkin EM (1964) Transport of large molecules across capillary walls. Physiologist 7:13–28

    Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a paravascular fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    Article  PubMed  CAS  Google Scholar 

  • Risau W, Hallmann R, Albrecht U, Henke-Fahle S (1986) Brain induces the expression of an early cell surface marker for blood-brain barrier-specific endothelium. EMBO J 5:3179–3183

    PubMed  CAS  Google Scholar 

  • Risau W, Engelhardt B, Wekerle H (1990) Immune function of the blood-brain barrier: incomplete presentation of protein (auto-) antigens by rat brain microvascular endothelium in vitro. J Cell Biol 110:1757–1766

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein JM (1988) Addressing the absence of a blood-brain barrier within transplanted brain tissue. A response. Science 241:473–474

    Article  Google Scholar 

  • Rosenstein JM, Brightman MW (1983) Circumventing the blood-brain barrier with autonomic ganglion transplants. Science 221:879–881

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL, Barbu K, Bard C, Cannon DE, Hall H, Horner M, Janatpour C, Liaw C, Manning K, Morales J, Porter S, Tanner L, Tomaselli K, Yednock T (1991) Differentiation of brain endothelial cells in cell culture. In: Abbott J, Lieberman EM, Raff, M (eds) Glial-neuronal interaction. NY Acad Sci (In press)

    Google Scholar 

  • Rutten MJ, Hoover RL, Karnovsky MJ (1987) Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res 425:301–310

    Article  PubMed  CAS  Google Scholar 

  • Savion N, Vlodavsky I, Fuks A (1984) Interaction of T lymphocytes and macrophages with cultured vascular endothelial cells: attachment, invasion, and subsequent degradation of the subendothelial extracellular matrix. J Cell Physiol 118:169–178

    Article  PubMed  CAS  Google Scholar 

  • Seulberger H, Lottspeich F, Risau W (1990) The inducible blood-brain specific molecule HT7 is a novel immunoglobulin - like cell surface glycoprotein. EMBO J 9:2151–2158

    PubMed  CAS  Google Scholar 

  • Shaver SW, Kadekaro M, Gross PM (1990a) Differential rates of glusose metabolism across subregions of the subfornical organ in Brattleboro rats. Regul Pept 27:37–49

    Article  PubMed  CAS  Google Scholar 

  • Shaver SW, Sposito NM, Gross PM (1990b) Quantitiative fine structure of capillaries in subregions of the rat subfornical organ. J Comp Neurol 294:145–152

    Article  PubMed  CAS  Google Scholar 

  • Shivers RR, Harris RJ (1984) Opening of the blood-brain barrier in Anolids carolinensis. A high voltage electron microscope protein tracer study. Neuropathol Appl Neurobiol 10:343–356

    Article  PubMed  CAS  Google Scholar 

  • Sternberger NW, Sternberger LA (1987) Blood-brain barrier protein recognized by monoclonal antibody. Proc Natl Acad Sci USA 84:8169–8173

    Article  PubMed  CAS  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192

    Article  PubMed  CAS  Google Scholar 

  • Tao-Cheng J-H, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7:3293–3299

    PubMed  CAS  Google Scholar 

  • Treherne JE, Pichon Y (1972) The insect blood-brain barrier. Adv Insect Physiol 9:257–313

    Article  CAS  Google Scholar 

  • Wagner RC, Andrews S (1985) Ultrastructure of the vesicular system in rapidly frozen endothelium of the rete mirabile. J Ultrastruct Res 90:172–182

    Article  Google Scholar 

  • Wakai S, Meiselman SE, Brighman MW (1986) Focal circumvention of blood-brain barrier with grafts of muscle, skin and autonomic ganglia. Brain Res 386:209–222

    Article  PubMed  CAS  Google Scholar 

  • Weindl A (1973) Neuroendocrine aspects of circumventricular organs. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Oxford University Press, New York, pp 3–32

    Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277

    Article  Google Scholar 

  • Wong GHW, Bartlett PF, Clark-Lewis I, McKimm-Breschkin JL, Schrader JW (1985) Interferon-y induces the expression of H-2 and la antigens on brain cells. J Neuroimmunol 7:255–278

    Article  PubMed  CAS  Google Scholar 

  • Zerwes HG, Risau W (1987) Polarized secretion of a platelet-derived growth factor - like chemotactic factor by endothelial cells in vitro. J Cell Biol 105:2037–2041

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brightman, M.W. (1992). Ultrastructure of Brain Endothelium. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics