Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

When Shakespeare put these words into Lear’s mouth he clearly would never have heard of a peptide or for that matter of any other plasma solute that might affect central nervous activity. However, he clearly appreciated the ability of the humours to influence mood and behaviour. Interestingly the essential concept is still with us that blood-borne signals, in this case peptides, might alter central nervous activity.

When nature, being oppressed, commands the mind To suffer the body.

King Lear, Act II Scene IV

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott NJ, Hughes CCW, Greenwood J, Orsmond P, Ramlakhan N, Revest PA (1990) Primary culture of rat brain capillary endothelial cells for physiological studies. J Physiol (Lond) 423:2P

    Google Scholar 

  • Ang VTY, Jenkins IS (1982) Blood-cerebrospinal fluid barrier to arginine-vasopressin, desmopressin and desglycinamide arginine-vasopressin in the dog. J Endocrinol 93:319–325

    CAS  PubMed  Google Scholar 

  • Audus KL (1990) Blood-brain barrier: mechanisms of peptide regulation and transport. J Controll Release 11:51–59

    CAS  Google Scholar 

  • Audus KL, Borchardt RT (1986a) Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm Res 3:81–87

    CAS  Google Scholar 

  • Audus KL, Borchardt RT (1986b) Characteristics of the large neutral amino acid transport system of bovine brain micro vessel endothelial cell monolayers. J Neurochem 47:484–488

    CAS  PubMed  Google Scholar 

  • Audus KL, Borchardt RT (1987) The use of isolated epithelial and cultured endothelial cells to elucidate drug transport mechanisms. In: Rand MJ, Raper C (eds) International pharmacology symposium, Elsevier, Amsterdam, pp 615–618

    Google Scholar 

  • Audus KL, Bartel RL, Hidalgo IJ, Borchardt RT (1990) The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm Res 7:435–451

    CAS  PubMed  Google Scholar 

  • Audus KL, Shinogle JA, Holthaus SR, Guillott FL (1988) Aluminum effects on brain microvessel endothelial cell monolayer permeability. Int J Pharmacol 45:249–257

    CAS  Google Scholar 

  • Banks WA, Kastin AJ (1985) Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 15:287–292

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ (1990) Peptide transport systems for opiates across the blood-brain barrier. Am J Physiol 259:E1–E10

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Coy DH (1984) Evidence that [125I-N-Tyr]-delta-sleep-inducing peptide crosses the blood-brain barrier by a non-competitive mechanism. Brain Res 301:201–207

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Horvath A, Michals EA (1987) Carrier-mediated transport of vasopressin across the blood-brain barrier of the mouse. J Neurosci Res 18:326–332

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Fasold MB (1988) Differential effects of aluminum on the blood-brain barrier transport of peptides, technecium and albumin. J Pharmacol Exp Ther 244:579–585

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Durham DA (1989) Bidirectional transport of interleukin-1alpha across the blood-brain barrier. Brain Res Bull 23:433–437

    CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Michals EA, Barrera CM (1990a) Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport sytem 1. Brain Res Bull 25:589–592

    CAS  PubMed  Google Scholar 

  • Banks WA, Schally AV, Barrera CM, Fasold MB, Durham DA, Csernus VJ, Groot K, Kastin A J (1990b) Permeability of the murine blood-brain barrier to some octapoptide analogs of somatostatin. Proc Natl Acad Sci USA 87: 6762–6766

    CAS  PubMed  Google Scholar 

  • Baranczyk-Kuzma A, Audus KL (1987) Characteristics of aminopeptidase activity from bovine brain microvessel endothelium. J Cereb Blood Flow Metab 7: 801–805

    CAS  PubMed  Google Scholar 

  • Barancyk-Kuzma A, Raub TJ, Audus KL (1989) Demonstration of acid hydrolase activity in primary cultures of bovine brain microvessel endothelium. J Cereb Blood Flow Metab 9:280–289

    Google Scholar 

  • Barrera CM Kastin AJ, Banks WA (1987) D-[Ala1]-peptide T-amide is transported from blood to brain by a saturable system. Brain Res Bull 19:629–633

    CAS  PubMed  Google Scholar 

  • Barrera CM, Banks WA, Kastin AJ (1989) Passage of Tyr-MIF-1 from blood to brain. Brain Res Bull 23:439–442

    CAS  PubMed  Google Scholar 

  • Begley DJ (1990) Interactions of the lipid-soluble drug cyclosporin with the blood-brain barrier of the anaesthetized guinea-pig. J Physiol (Lond) 423:39P

    Google Scholar 

  • Begley DJ, Chain DG (1992) Mechanisms regulating peptide levels in the cerebrospinal fluid. In: Segal MB (ed) The fluids and barriers of the eye and brain. Macmillan, Basingstoke, pp 82–105

    Google Scholar 

  • Begley DJ, Zlokovic BV (1986) Neuropeptides and the blood-brain barrier. In: Suckling AJ, Rumsby MG, Bradbury MWB (eds) The blood-brain barrier in health and disease. Ellis Horwood, Chichester VCH, New York, pp 98–108

    Google Scholar 

  • Begley DJ, Squires LK, Zlokovic BV, Mitrovic DM, Hughes CCW, Revest PA, Greenwood J (1990) Permeability of the blood-brain barrier to the immunosuppressive cyclic peptide cyclosporin A. J Neurochem 55:1222–1230

    CAS  PubMed  Google Scholar 

  • Betz AL, Gilboe DD, Yudilevich DL, Drewes LR (1973) Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol 225:586–592

    CAS  PubMed  Google Scholar 

  • Betz AL, Csejtey J, Goldstein GW (1979) Hexose transport and phosphorylation by capillaries isolated from rat brain. Am J Physiol 236:C96–C102

    CAS  PubMed  Google Scholar 

  • Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of a-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32

    CAS  PubMed  Google Scholar 

  • Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, Chichester, pp 137–140

    Google Scholar 

  • Broadwell R (1989) Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathol (Berl) 79:17–128

    Google Scholar 

  • Broadwell R, Wolf A, Tangoren M (1989) Transcytosis of blood-borne ferrotransferrin and insulin through the blood-brain barrier. Soc Neurosci Abstr 15:821

    Google Scholar 

  • Brust P (1986) Changes in regional blood-brain transfer of L-leucine elicited by arginine-vasopressin. J Neurochem 46:534–541

    CAS  PubMed  Google Scholar 

  • Brust P, Zicha J (1988) Kinetics of regional blood-brain barrier transport of L-leucine in Brattleboro rats. Biomed Biochim Acta 47:1013–1021

    CAS  PubMed  Google Scholar 

  • Bugge J (1974) The cephalic arteries of hystricomorph rodents. Symp Zool Soc Lond 43:61–78

    Google Scholar 

  • Butt AM, Jones HC, Abbott NJ (1990) Electrical resistance across the blood-brain barrier in anaesthetised rats: a developmental study. J Physiol (Lond) 429: 47–62

    CAS  Google Scholar 

  • Cefalu WT, Pardridge WM (1985) Restrictive transport of a lipid-soluble peptide(cyclosporin) through the blood-brain barrier. J Neurochem 45:1954–1956

    CAS  PubMed  Google Scholar 

  • Christensen H (1979) Developments in amino acid transport illustrated for the blood-brain barrier. Biochem Pharmacol 28:1989–1992

    CAS  PubMed  Google Scholar 

  • Clark HB, Hartman BK Raichle ME, Preskorn SH, Larson KB (1981) Measurement of cerebral vascular extraction fractions in the rat using intracarotid injection techniques. Brain Res 208:311–323

    CAS  PubMed  Google Scholar 

  • Cornford EM, Braun LD, Crane PD, Oldendorf WH (1978) Blood-brain barrier restriction of peptides and the low uptake of enkephalins. Endocrinology 103: 1297–1303

    CAS  PubMed  Google Scholar 

  • Cox BF, Hay M, Bishop VS (1990) Neurons in area postrema mediate vasopressin-induced enhancement of the baroreflex. Am J Physiol 258:H1943–H1946

    CAS  PubMed  Google Scholar 

  • Crone C,(1986a) The blood-brain barrier: a modified tight epithlium. In: Suckling AJ, Rumsby MG, Bradbury MWB (eds) The blood-brain barrier in health and disease. Ellis Horwood, Chichester VCH, New York, pp 17–40

    Google Scholar 

  • Crone C (1986b) Modulation of solute permeability in microvascular endothelium. Fed Proc 45:77–83

    CAS  PubMed  Google Scholar 

  • Crone C, Olesen SP (1981) The electric resistance of brain capillary endothelium. J Physiol (Lond) 316:53P–54P

    Google Scholar 

  • Crone C, Thompson AM (1970) Permeability of brain capillaries. In: Crone, C, Lassen NA (eds) Capillary permeability. Munksgaard, Copenhagen, pp 447–453

    Google Scholar 

  • Daniel PM, Love ER, Pratt OE (1975) Insulin and the way the brain handles glucose. J Neurochem 25:471–476

    CAS  PubMed  Google Scholar 

  • Deane R, Segal MB (1985) The transport of sugars across the perfused choroid plexus of the sheep. J Physiol (Lond) 362:245–260

    CAS  Google Scholar 

  • Dehouck M-P, Meresse PD, Fruchart J-C, Cecchelli R (1989) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801

    Google Scholar 

  • De Montis MG, Olianas MC, Haber B, Tagliamonte A (1978) Increase in large neutral amino acid transport into brain by insulin. J Neurochem 30:121–124

    PubMed  Google Scholar 

  • De Wildt D, Verhoef J, Witter A (1982) H-Pro-[2H]Leu-Gly NH2: uptake and metabolism in rat brain. J Neurochem 38:67–74

    PubMed  Google Scholar 

  • Duffy KR, Pardridge WM (1987) Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 420:32–38

    CAS  PubMed  Google Scholar 

  • Ellison MD, Povlishock JT, Merchant RE (1987) Blood-brain barrier dysfunction in cats following recombinant interleukin-2 infusion. Cancer Res 47:5765–5770

    CAS  PubMed  Google Scholar 

  • Ermisch A, Rühle H-J, Neubert K, Hartrodt K, Landgraf R (1983) On the blood-brain barrier to peptides: [3H]-beta-casomorphin-5 uptake by eighteen brain regions in vivo. J Neurochem 41:1229–1223

    CAS  PubMed  Google Scholar 

  • Ermisch A, Rühle H-J, Klauschenz E, Kretzschmar R (1984) On the blood-brain barrier to peptides: [3H]-gonadotropin releasing hormone accumulation by eighteen regions of the rat brain and by anterior pituitary. Exp Clin Endocrinol 84:112–116

    CAS  PubMed  Google Scholar 

  • Ermisch A, Barth T, Rühle H-J, Skopkova J, Hibas P, Landgraf R (1985a) On the blood-brain barrier to peptides: accumulation of radioactive labelled vasopressin, desGlyNH2-vasopressin and oxytocin by brain regions. Endocrinol Exp 19:29–37

    CAS  PubMed  Google Scholar 

  • Ermisch A, Rühle H-J, Landgraf R, Hess J (1985b) Blood-brain barrier and peptides. J Cereb Blood Flow Metab 5:350–358

    CAS  PubMed  Google Scholar 

  • Ermisch A, Landgraf R, Brust P, Kretzschmar R, Hess J (1988) Peptide receptors of the cerebral capillary endothelium and the transport of amino acids across the blood-brain barrier. In: Rakic LJ, Begley DJ, Davson H, Zlokovic BY (eds) Peptide and amino acid transport mechanisms in the central nervous system. Macmillan Stockton, Basingstoke, pp 41–53

    Google Scholar 

  • Eschalier A, Ardid D, Aumaitre O, Fialip J, Duchene-Marullaz P (1990) Central long-lasting analgesic effect of RC 160, an analog of somatostatin. Eur J Pharmacol 183:1067

    Google Scholar 

  • Fitzsimons JT (1980) Angiotensin stimulation of the central nervous system. Rev Phys Biochem Pharmacol 87:117–149

    CAS  Google Scholar 

  • Frank HJL, Pardridge WM (1981) A direct in vitro demonstration of insulin binding to isolated brain microvessels. Diabetes 30:757–761

    CAS  PubMed  Google Scholar 

  • Frank HJL, Jankovic-Vokes T, Pardridge WM, Morris WL (1985) Enhanced binding to blood-brain barrier in vivo and to brain microvessels in vitro in newborn rabbits. Diabetes 43:728–733

    Google Scholar 

  • Frank HJL, Pardridge WM, Jankovic-Vokes T, Vinters HV, Morris WL (1986a) Insulin binding to the blood-brain barrier in the streptozotocin diabetic rat. J Neurochem 47:405–411

    CAS  PubMed  Google Scholar 

  • Frank HJL, Pardridge WM, Morris, WL, Rosenfeld RG, Choi TB (1986b) Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes 35:654–661

    CAS  PubMed  Google Scholar 

  • Goldman H, Murphy S (1981) An analog of ACTH/MSH4–9, ORG-2766, reduces permeability of the blood-brain barrier. Pharmacol Biochem Behav 14:845–848

    CAS  PubMed  Google Scholar 

  • Goldstein GW, Wolinsky JS, Csejtey J, Diamond I (1975) Isolation of metabolically active capillaries from rat brain. J Neurochem 25:715–717

    CAS  PubMed  Google Scholar 

  • Greenberg R, Whalley CE, Jourdikian F, Mendelson IS, Walter R, Nikolics K, Coy DH, Schally AV, Kastin A J (1976) Peptides readily penetrate the blood-brain barrier: uptake by synaptosomes is passive. Pharmacol Biochem Behav 5 [Suppl 1]:151–158

    CAS  PubMed  Google Scholar 

  • Guillot FL, Raub TJ, Audus KL (1987) Fluid phase endocytosis by bovine brain capillary endothelial cells in vitro. Cell Biol 105:312a

    Google Scholar 

  • Guillot FL, Audus KL, Raub TJ (1990) Fluid-Phase endocytosis by primary cultures of bovine brain microveobsel endothelial cell monolayers. Microvasc Res 39:1–14

    CAS  PubMed  Google Scholar 

  • Hambrook JM, Morgan BA, Ranee MJ, Smith CFC (1976) Mode of inactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature 262:782–783

    CAS  PubMed  Google Scholar 

  • Harding JW, Sulliva MJ, Hanesworth JM, Cushing LL, Wright JW (1988) Inability of [125I]-Sar1-Ile8-Angiotensin II to move between the blood and cerebrospinal fluid compartments. J Neurochem 50:554–557

    CAS  PubMed  Google Scholar 

  • Hertz MM, Paulson OB, Barry DI, Christiansen JS, Svendsen PA (1981) Insulin increases glucose transfer across the blood-brain barrier in man. J Clin Invest 67:597–604

    CAS  PubMed  Google Scholar 

  • Hoffman PL, Walter R, Bulat M (1977) An enzymatically stable peptide with activity in the central nervous system: its penetration through the blood-CSF barrier. Brain Res 122:87–94

    CAS  PubMed  Google Scholar 

  • Hughes CCW, Lantos PL (1989) Uptake of leucine and alanine by cultured cerebral cpaillary endothelial cells. Brain Res 480:126–132

    CAS  PubMed  Google Scholar 

  • Hyman S, Lipovac MN, McComb JG, Tang G, Zlokovic BV (1990) Kinetic analysis of vasopressin-arginine uptake at the luminal side of the blood-brain barrier studied in an in situ perfused brain of the anaesthetised guinea-pig. J Physiol (Lond) 423:37P

    Google Scholar 

  • Ibaragi M, Niwa M, Ozaki M (1989) Atrial natriuretic peptide modulates amiloride-sensitive Na+ transport across the blood-brain barrier. J Neurochem 53: 1802–1806

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Fabre LA (1982) Limitations to effect of a-MSH on permeability of blood-brain barrier to i.v. 99mTc-pertechnetate. Pharmacol Biochem Behav 17:1199–1201

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Nissen C, Schally AV, Coy DH (1976) Blood-brain barrier, half-time disappearance, and brain distribution for labeled enkephalin and a potent analog. Brain Res Bull 1:583–589

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Nissen C, Schally AV, Coy DH (1979) Additional evidence that small amounts of a peptide can cross the blood-brain barrier. Pharmacol Biochem Behav 11:717–719

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Banks WA, Castellanos PF, Nissen C, Coy DH (1982) Differential penetration of DSIP peptides into rat brain. Pharmacol Biochem Behav 17: 1187–1191

    CAS  PubMed  Google Scholar 

  • Krenning EP, Breeman WAP, Kooij PPM, Lameris JS, Bakker WH, Koper JW, Ausema L, Reubi JC, Lamberts SWJ (1989) Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet i:242–243

    Google Scholar 

  • Kretzschmar R, Ermisch A (1987) Arginine vasopressin binding to isolated cerebral microvessels. Wiss Z Karl Marx Univ Leipzig Math-Naturwiss R 36(l):78–80

    CAS  Google Scholar 

  • Lamberts SWJ (1986) Non-pituitary action of somatostatin. A review on the therapeutic role of SMS 201–995 (Sandostatin). Acta Endocrinol 112 [Suppl 276]:4155

    Google Scholar 

  • Lamberts SWJ (1987) A guide to the clinical use of the somatostatin analogue SMS 201–995 (Sandostatin). Acta Endocrinol 116 [Suppl 286]:54–66

    Google Scholar 

  • Landgraf R, Klauschenz E, Bienert M Ermisch A, Oehma P (1983) Some observations indicating a low brain uptake of [3H]-Nle11-substance P. Pharmazie 38:108–110

    CAS  PubMed  Google Scholar 

  • Lemaire M, Tillement JP (1982) Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J Pharm Pharmacol 34:715–718

    CAS  PubMed  Google Scholar 

  • Lorenzo AV, Winston KR, Adler J (1988) The uptake by choroid plexus and passage of 125I-Prolactin in preterm rabbits. In: Rakic LJ, Begley DJ, Davson H, Zlokovic BV (eds) Peptide and amino acid transport mechanisms in the central nervous system. Macmillan/Stockton, Basingstoke, pp 67–78

    Google Scholar 

  • Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59:305–352

    CAS  PubMed  Google Scholar 

  • Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature 215: 1375–1376

    CAS  PubMed  Google Scholar 

  • Matthews DM (1972) Rates of peptide uptake by small intestine. In: Elliot K, O’Connor A (eds) Peptide transport in bacteria and mammalian gut. Ciba Foundation Symposium. Elsevier, Amsterdam, pp 71–88

    Google Scholar 

  • Mens WBJ, Witter A, van Wimersma-Greidanus T (1983) Penetration of neurohypophysial hormones from plasma into cerebrospinal fluid: half-times of disappearance of these neuropetides from CSF. Brain Res 262:143–149

    CAS  PubMed  Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to non-electrolytes in the conscious rat. Am J Physiol 235: H229–H307

    Google Scholar 

  • Oldendorf WH (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 24:372–376

    CAS  PubMed  Google Scholar 

  • Oldendorf WM (1971) Brain uptake of radio-labeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221:1629–1639

    CAS  PubMed  Google Scholar 

  • Oldendorf WM (1981) Blood-brain barrier permeability to peptides, pitfalls inmeasurement. Peptides 2 [Suppl 2]: 109–111

    CAS  Google Scholar 

  • Oldendorf WH, Braun LD (1976) [3H]-Tryptamine and [3H]-water as diffusible internal standards for measuring brain extraction of radio-labeled substances following carotid injection. Brain Res 113:219–224

    CAS  PubMed  Google Scholar 

  • Olesen SP, Crone C (1983) Electrical resistance of muscle capillary endothelium. Biophys J 42:31–41

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1986) Mechanisms of neuropeptide ineraction with the blood-brain barrier. Ann NY Acad Sci 481:231–249

    CAS  Google Scholar 

  • Pardridge WM, Mietus LJ (1981) Enkephalin and blood-brain barrier: studies of binding and degradation in isolated brain microvessels. Endocrinology 109:1138–1143

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Mietus LJ (1982) Kinetics of neutral amino acid transport through the blood-brain barrier of the newborn rabbit. J Neurochem 38:955–962

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Fierer G (1985) Blood-brain barrier transport of butanol and water relative to N-isopropyl-p-iodoamphetamine as the internal reference. J Cereb Blood Flow Metab 5:275–281

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Eisenberg J, Yamada T (1985a) Rapid sequestration and degradation of somatostatin by isolated brain micro vessels. J Neurochem 44:1178–1184

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Eisenberg J, Yang J (1985b) Human blood-brain barrier insulin receptor. J Neurochem 44:1771–1778

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Landaw EM, Miller LP, Braun LD, Oldendorf WM (1985c) Carotid artery injection technique: bounds for bolus mixing by plasma and by brain. J Cereb Blood Flow Metab 5:576–583

    CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    CAS  PubMed  Google Scholar 

  • Pollay M, Stevens A, Estrada E, Kaplan R (1972) Extracorporeal perfusion of choroid plexus. J Appl Physiol 32:612–617

    CAS  PubMed  Google Scholar 

  • Raeissi S, Audus KL (1989) In-vitro characterization of blood-brain barrier permeability to delta sleep-inducing peptide. J Pharm Pharmacol 41:848–852

    CAS  PubMed  Google Scholar 

  • Rakic Lj, Zlokovic BV, Davson H, Segal MB, Begley DJ, Lipovac MN, Mitrovic DM (1989) Chronic amphetamine intoxication and the blood-brain barrier to inert polar molecules studied in the vascularly perfused guinea pig brain. J Neurol Sci 94:41–50

    CAS  Google Scholar 

  • Ramlakhan N (1990) Albumin binding and endocytosis by cultured rat brain endothelium. J Physiol (Lond) 423:34P

    Google Scholar 

  • Rapoport SI, Klee WA, Pettigrew KD, Ohno K (1980) Entry of opioid peptides into the central nervous system. Science 207:84–86

    CAS  PubMed  Google Scholar 

  • Reid IA (1984) Actions of angiotensin II on the brain: mechanisms and physiological role. Am J Physiol 206:F533–F543

    Google Scholar 

  • Reith J, Ermisch A, Diemer NH, Gjedde A (1987) Saturable retention of vasopressin by hippocampus vessels in vivo, associated with inhibition of blod-brain transfer of large neutral amino acids. J Neurochem 49:1471–1479

    CAS  PubMed  Google Scholar 

  • Reubi JC, Lang W, Maurer R, Koper JW, Lamberts SWJ (1987) Distribution and biochemical characterisation of somatostatin receptors in tumours of the human central nervous system. Cancer Res 47:5758–5764

    CAS  PubMed  Google Scholar 

  • Revest PA, Greenwood J, Abbott NJ (1992) Amino acid transport by rat brain capillary endothelial cells in culture. J Neurochem (in press)

    Google Scholar 

  • Richerson GB, Getting PA (1990) Preservation of integrative function in a perfused guinea pig brain. Brain Res 517:7–18

    CAS  PubMed  Google Scholar 

  • Rudman D, Kutner MH (1978) Melanotropic peptides increase permeability of plasma/cerebrospinal fluid barrier. Am J Physiol 234:E327–E332

    CAS  PubMed  Google Scholar 

  • Sankar R, Domer F, Kastin AJ (1981) Selective effects of a-MSH and MIF-1 on the blood-brain barrier. Peptides 2:345–347

    CAS  PubMed  Google Scholar 

  • Schally AV, Cai R-Z, Torres-Aleman I, Redding TW, Szoke B, Fu D, Hierowski MT, Konturek S (1986) Endocrine, gastrointestinal and antitumor activity of somatostatin analogues. In: Moody TW (ed) Neural and endocrine peptides and receptors. Plenum, New York, pp 73–88

    Google Scholar 

  • Schwartz NW, Sipols A, Kahn SE, Latteman DF, Taborsky GJ, Bergman RN, Woods SC, Porte D (1990) Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am J Physiol 259:E378-E383

    CAS  PubMed  Google Scholar 

  • Smith KR, Borchardt RT (1984) Permeability and mechanism of albumin transport across blood-brain capillary endothelial cells. Pharm Res 4:S–41

    Google Scholar 

  • Smith QR, Takasato Y, Rapoport SI (1984) Kinetic analysis of L-leucine transport across the blood-brain barrier. Brain Res 311:167–170

    CAS  PubMed  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    CAS  PubMed  Google Scholar 

  • Squires LK (1990) A study of insulin in plasma and cerebrospinal fluid by high performance liquid chromatography. PhD Thesis, University of London

    Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    CAS  PubMed  Google Scholar 

  • Takasato Y, Momma S, Smith QR (1985) Kinetic analysis of cerebrovascular isoleucine transport from saline and plasma. J Neurochem 45:1013–1020

    CAS  PubMed  Google Scholar 

  • Triguero D, Buciak J, Pardridge WM (1990) Capillary depletion method for quantification of blood-brain barrier transport of circulating peptides and plasma proteins. J Neurochem 54:1882–1888

    CAS  PubMed  Google Scholar 

  • Van Houten M, Posner BI, Kopriwa BM, Brawer JR (1979) Insulin binding sites in the rat brain: in vivo localization to the crieumventricular organs by quantitative radioautography. Endocrinology 105:666–673

    PubMed  Google Scholar 

  • Verheugen C, Laufer IR, De Facio H, Pardridge WB, Lu JK, Judd HL (1983) Impermeability of the rat blood-brain barrier to exogenously administered gonadotropin-releasing hormone. Neuroendocrinology 36:102–104

    CAS  PubMed  Google Scholar 

  • Walsh RJ, Slaby F, Posner BI (1987) Prolactin transport from blood to cerebrospinal fluid: a receptor-mediated process. Wiss Z Karl Marx Univ Leipzig Math-Naturwiss R 36:(1), 119

    Google Scholar 

  • Walter R, Ritzmann RF, Bhargave HN, Flexner LB (1979) Prolyl-leucyl-glycinamide, (cyclo-leucylglycine), and derivatives block development of physical dependence on morphine in mice. Proc Natl Acad Sci USA 76:518–520

    CAS  PubMed  Google Scholar 

  • Wilson JF, Anderson AG, Snook G, Llewellyn KK (1984) Quantification of the permeability of the blood-CSF barrier to a-MSH in the rat. Peptides 5:681–685

    CAS  PubMed  Google Scholar 

  • Woods SC, Porte D (1977) Relationship between plasma and cerebrospinal fluid insulin levels of dogs. Am J Physiol 233:E331–E334

    CAS  PubMed  Google Scholar 

  • Yudilevich DL, Mann GE (1982) Unidirectional uptake of substrates at the blood-tissue interface of secretory epithelia: stomach, salivary gland and pancreas. Fed Proc 41:3045–3053

    CAS  PubMed  Google Scholar 

  • Zadina JE, Banks WA, Kastin A J (1986) Central nervous system effects of peptides, 1980–1985: a cross-listing of peptides and their central actions from the first six years of the journal Peptides. Peptides 7:497–537

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Wright EM (1981) Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J Membr Biol 60:105–128

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Begley DJ, Chain DG (1983) Blood-brain barrier permeability to dipeptides and their constituent amino acids. Brain Res 271:66–71

    Google Scholar 

  • Zlokovic BV, Begley DJ, Chain-Eliash DG (1985a) Blood-brain barrier permeability to leucine enkephalin, D-alanine2-D-leucine 5-enkephalin and their N-terminal amino acid (Tyrosine). Brain Res 336:125–132

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Segal MB, Begley DJ (1985b) Permeability of the isolated choriod plexus of the sheep to thyrotropin-releasing hormone. In: Yudilevich DL, Mann GE (eds) Carrier mediated transport of solutes from blood to tissue. Longman, London, pp 307–312

    Google Scholar 

  • Zlokovic BV, Segal MB, Begley DJ, Davson H, Rakic Lj (1985c) Permeability of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin releasing hormone. Brain Res 358:191–199

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Begley DJ, Djuricic BM, Mitrovic D (1986) Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain: Method and application to N-methyl-a-aminoisobutyric acid. J Neurochem 46:1444–1451

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Lipovac MN, Begley DJ, Davson H, Rakic LJ (1987) Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea pig brain. J Neurochem 49:310–315

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Lipovac MN, Begley DJ, Davson H, Rakic Lj (1988a) Slow penetration of thyrotropin releasing hormone across the blood-brain barrier of an in situ perfused guinea pig brain. J Neurochem 51:252–257

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Segal MB, Davson H, Jankov RM (1988b) Passage of delta sleepinducing peptide (DSIP) across the blood-cerebrospinal fluid barrier. Peptides 9:533–538

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Segal MB, Davson H, Mitrovic DM (1988c) Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier; a saturable mechanism. Regul Pept 20:33–44

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Begley DJ, Segal MB, Davson H, Rakic LJ, Lipovac MN, Mitrovic DM, Jankov RM (1988d) Neuropeptide transport mechanisms in the central nervous system. In: Rakic LJ, Begley DJ, Davson H, Zlokovic BV (eds) Peptide and amino acid transport mechanisms in the central nervous system. Macmillan Basingstoke, Stockton, pp 3–19

    Google Scholar 

  • Zlokovic BV, Mackic JB, Djuricic, Davson H (1989a) Kinetic analysis of leucine-enkephalin cellular uptake at the luminal side of the blood-brain barrier of an in situ perfused guinea-pig brain. J Neurochem 53:1333–1340

    CAS  PubMed  Google Scholar 

  • Zlokovic BV, Susie VT, Davson H, Begley DJ, Jankov RM, Mitrovic DM, Lipovac MN (1989b) Saturable mechanism for delta sleep-inducing peptide (DSIP) at the blood-brain barrier of the vascularly perfused guinea pig brain. Peptides 10: 249–254.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Begley, D.J. (1992). Peptides and the Blood-Brain Barrier. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics