Skip to main content

Abstract

Transplantation or histocompatibility antigens were originally defined histogenically in vivo by exchanging tissue grafts between genetically dissimilar inbred strains of mice, their Fl, F2 hybrid and backcross (BC) progeny (Snell 1948). When two parental strains, PI and P2, reject each other’s grafts, both strains reject grafts from their F1 hybrid progeny, whereas F1 recipients accept grafts from either parental strain and all F2 and BC progeny (Fig. 1). These results established that transplantation antigens were eodominantly expressed. From the very small numbers of F 2 or BC donors whose grafts could be accepted by the parental strains, it was clear that a number of different histocompatibility (H) antigens were independently segregating. They were named sequentially H-l, H-2, H-3, etc., as they were identified and isolated by further backcrossing. The strongest of these, H-2, which elicited the most rapid graft rejection, was found to react with antibodies raised by Gorer using immunisation between inbred mouse strains: Gorer et al. (1948) then laid the foundation of serological analysis of the genetics and polymorphism of what we now know as the major histocompatibility complex (MHC), H-2 in mouse (Klein 1975), which has homologues in all mammalian species, including the human HLA system.

The work in our laboratory on minor H antigens is supported in part by the Cancer Research Campaign and by the MRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe R, Foo-Phillips M, Hodes RJ (1989) Analysis of Mlsc genetics. A novel instance of genetic redundancy. J Exp Med 170:1059–1073

    Article  PubMed  CAS  Google Scholar 

  • Acha-Orbea H, Mitchell DJ, Timmermann L, Wraith DC, Tausch GS, Waldor MK, Zamvil SS, McDevitt HO, Steinman L (1988) Limited heterogeneity of T cell receptors from lymphocytes mediating auto-immune encephalomyelitis allows specific immune intervention. Cell 54:263–273

    Article  PubMed  CAS  Google Scholar 

  • Bailey DW (1971) Brief communication: cumulative effect or independent effect? Transplantation 11:419–422

    Article  PubMed  CAS  Google Scholar 

  • Bailey DW (1975) Genetics of histocompatibility in mice. I. New loci and congenic lines. Immunogenetics 2:249–256

    Article  Google Scholar 

  • Bernhard EJ, Le AT, Yannelli JR, Holterman MJ, Hogan KT, Parham P, Engelhard VH (1987) The ability of cytotoxic T cells to recognise HLA-A2 or HLA-B7 antigens expressed on murine cells correlates with their epitope specificity. J Immunol 139:3614–3621

    PubMed  CAS  Google Scholar 

  • Bevan MJ (1975) The major histocompatibility complex determines susceptibility to cytotoxic T cells directed against minor histocompatibility antigens. J Exp Med 142:1349–1364

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JC, Wiley DC (1987a) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JC, Wiley DC (1987b) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    Article  PubMed  CAS  Google Scholar 

  • Blackman M, Kappler J, Marraek P (1990) The role of the T cell receptor in positive and negative selection of developing T cells. Science 248:1335–1341

    Article  PubMed  CAS  Google Scholar 

  • Cepellini R, Mattiuz PL, Scudeller G, Visetti M (1969) Experimental allotransplantation in man. I. The role of the HLA system in different genetic combinations. Transplant Proc 1:385–389

    Google Scholar 

  • Choi Y, Kotzin B, Herron L, Callahan J, Marraek P, Kappler J (1989) Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc Natl Acad Sci USA 86:8941–8945

    Article  PubMed  CAS  Google Scholar 

  • Cochet M, Casrouge A, Dumont A-M, Transy C, Baleux F, Maloy WL, Coligan JE, Cazenave P-A, Kourilsky P (1989) A new cell surface molecule closely related to mouse class I transplantation antigens. Eur J Immunol 19:1927–1931

    Article  PubMed  CAS  Google Scholar 

  • Cohen JC, Varmus HE (1979) Endogenous mammary tumour virus DNA varies among wild mice and segregates during inbreeding. Nature 278:418–423

    Article  PubMed  CAS  Google Scholar 

  • Cook RG, Jenkins RN, Flaherty L, Rich RR (1983) The Qa-1 alloantigens. II. Evidence for the expression of two Qa-1 molecules by the Qa-ld genotype and for cross-reactivity between Qa-1 and H-2K. J Immunol 130:1293–1299

    PubMed  CAS  Google Scholar 

  • Davis AP, Roopenian DC (1990) Complexity at the mouse minor histocompatibility locus H-4. Immunogenetics 31:7–12

    Article  PubMed  CAS  Google Scholar 

  • Dyson PJ, Knight AM, Fairchild S, Simpson E, Tomonari K (1991) Co-segregation of genes encoding ligands responsible for T cell receptor Vβll deletion with Mtv genomes. Nature 349:531–532

    Article  PubMed  CAS  Google Scholar 

  • Eichwald EJ, Silmser CR (1955) Communication. Transplant Bull 2:148–149

    CAS  Google Scholar 

  • Festenstein H (1973) Immunogenetic and biological aspects of in vitro lymphocyte allotransformation (MLR) in the mouse. Transplant Rev 15:62–88

    PubMed  CAS  Google Scholar 

  • Frankel WN, Rudy C, Coffin JM, Huber BT (1991) Linkage of Mis genes to endogenous mammary tumour viruses of inbred mice. Nature 349:526–529

    Article  PubMed  CAS  Google Scholar 

  • Gasser DL, Silvers WK (1972) Genetics and immunology of sex-linked antigens. Adv Immunol 15:215–247

    Article  PubMed  CAS  Google Scholar 

  • Gordon RD, Simpson E, Samelson L (1975) In vitro cell-mediated immune responses to the male specific (H-Y) antigen in mice. J Exp Med 142:1108–1120

    Article  PubMed  CAS  Google Scholar 

  • Gorer PA, Lyman S, Snell GD (1948) Studies on the genetic and antigenic basis of tumour transplantation linkage between a histocompatibility gene and ‘fused’ in mice. Proc Soc Lond [Biol] 135:499–505

    Article  Google Scholar 

  • Goulmy E (1988) Minor histocompatibility antigens in man and their role in transplantation. Transplant Rev 2:29–54

    Article  Google Scholar 

  • Happ MP, Woodland DL, Palmer E (1989) A third T cell receptor β-chain variable region gene encodes reactivity to Mls-la gene products. Proc Natl Acad Sci USA 86:6293–6296

    Article  PubMed  CAS  Google Scholar 

  • Jenkins NA, Copeland NG, Ihylor BA, Lee BK (1981) Dilute(d) coat color mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293:370–374

    Article  PubMed  CAS  Google Scholar 

  • Kappler JW, Roehm N, Marraek P (1987) T cell tolerance by clonal elimination in the thymus. Cell 49:273–280

    Article  PubMed  CAS  Google Scholar 

  • Kappler JW, Staerz U, White J, Marraek PC (1988) Self-tolerance eliminates T cells specific for Mis-modified products of the major histocompatibility complex. Nature 332:35–40

    Article  PubMed  CAS  Google Scholar 

  • Kisielow P, Bluthmann H, Staerz UD, Steinmetz M, von Boehmer H (1988) Tolerance in T-cell receptor transgenic mice involves deletion of non-mature CD4+8+ thymocytes. Nature 333:742–746

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1975) Biology of the mouse histocompatibility-2 complex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kozak C, Peters G, Pauley R, Morris V, Miehalides R, Dudley J, Green M, Davisson M, Prakash O, Vaidya A, Hilgers J, Verstraeten A, Hynes N, Diggelmann H, Peterson D, Cohen JC, Dickson C, Sarkar N, Nusse R, Varmus H, Callahan R (1987) A standardised nomenclature for endogenous mouse mammary tumor viruses. J Virol 61:1651–1654

    PubMed  CAS  Google Scholar 

  • Ljunggren H-G, Stam NJ, Ohlen C, Neefjes JJ, Hoglund P, Heemels M-T, Bastin J, Schumacher TNM, Townsend A, Karre K, Ploegh HL (1990) Empty MHC class I molecules come out in the cold. Nature 346:476–480

    Article  PubMed  CAS  Google Scholar 

  • Lombardi G, Sidhu S, Lamb JR, Batchelor JR, Lechler R (1988) Co-recognition of endogenous peptide with HLA-DR1 by alloreactive human T cell clones. J Immunol 142:753–759

    Google Scholar 

  • Loveland B, Simpson E (1986) The non-MHC transplantation antigens reviewed: neither weak nor minor. Immunol Today 7:223–229

    Article  CAS  Google Scholar 

  • MacDonald HR, Schneider R, Lees RK, Howe RC, Acha-Orbea H, Festenstein H, Zinkernagel RM, Hengartner H (1988) T cell receptor Vβ use predicts reactivity and tolerance to Mlsa-en-coded antigens. Nature 332:40–45

    Article  PubMed  CAS  Google Scholar 

  • Maloy WL, Coligan JE (1982) Primary strucutre of the H-2Db alloantigen. Immunogenetics 16:11–22

    Article  PubMed  CAS  Google Scholar 

  • Marrack P, Kushnir E, Kappler J (1991) A maternally inherited superantigen encoded by a mammary tumour virus. Nature 349:524–526

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P, Bevan M J (1977) Why do so many lymphocytes respond to the major histocompatibility antigens? Cell Immunol 29:1–5

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P, Zamoyska R, Waldmann H (1984) Self-tolerance is H-2-restricted. Nature 308:738–741

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Antoniou J, Robinson PJ (1985) Structure and expression of genes encoding murine Qa-2 class I antigens. Proc Natl Acad Sci USA 82:5920–5924

    Article  PubMed  CAS  Google Scholar 

  • Meruelo D, Rossomando A, Offer M, Buxbaum J, Pellicer A (1983) Association of endogenous viral loci with genes encoding murine histocompatibility and lymphocyte differentiation antigens. Proc Natl Acad Sci USA 80:5032–5036

    Article  PubMed  CAS  Google Scholar 

  • Okada CY, Holzmann B, Guidos C, Palmer E, Weissman IL (1990) Characterisation of a rat monoclonal antibody specific for a determinant encoded by the Vβ7 gene segment. Depletion of Vβ7+ T cells in mice with Mls-la haplotype. J Immunol 144:3473–3477

    PubMed  CAS  Google Scholar 

  • O’Neill AE, Reid K, Garberi JC, Karl M, Flaherty L (1986) Extensive deletions in the Q region of the mouse major histocompatibility complex. Immunogenetics 24:368–373

    Article  PubMed  Google Scholar 

  • Peters G, Placzek M, Brookes S, Kozak C, Smith R, Dickson C (1986) Characterisation, chromosome assignment and segregation analysis of endogenous proviral units of mouse mammary tumor virus. J Virol 59:535–544

    PubMed  Google Scholar 

  • Pullen AM, Marrack P, Kappler JW (1988) The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens. Nature 335:796–801

    Article  PubMed  CAS  Google Scholar 

  • Pullen AM, Marrack P, Kappler JW (1989) Evidence that Mls-2 antigens which delete Vβ3+ T cells are controlled by multiple genes. J Immunol 142:3033–3037

    PubMed  CAS  Google Scholar 

  • Pullen AM, Wade T, Marrack P, Kappler JW (1990) Identification of the region of T cell receptor β chain that interacts with the self-superantigen Mls-la. Cell 61:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Lefkovits I, Fischer Lindahl K (1987) Molecular complexity of Qa-2 antigens demonstrated by two-dimensional gel electrophoresis. J Immunogenet 14:81–87

    Article  PubMed  CAS  Google Scholar 

  • Roopenian DC, Davis AP (1989) Responses against antigens encoded by the H-3 histocompatibility locus: antigens stimulating class I MHC-and class II MHC-restricted T cells are encoded by separate genes. Immunogenetics 30:335–343

    Article  PubMed  CAS  Google Scholar 

  • Rotzschke O, Falk K, Wallny H J, Faath S, Rammensee HG (1990) Characterisation of naturally occuring minor histocompatibility peptides including H-4 and H-Y. Science 249:283–287

    Article  PubMed  CAS  Google Scholar 

  • Scott D, McLaren A, Dyson J, Simpson E (1991) Variable spread of X inactivation affecting the expression of different epitopes of the Hya gene product in mouse B-cell clones. Immunogenetics 33:54–61

    Article  PubMed  CAS  Google Scholar 

  • Sha WC, Nelson CA, Newberry RD, Kranz DM, Russell JH, Loh DY (1988) Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336:73–76

    Article  PubMed  CAS  Google Scholar 

  • Simpson E (1982) The role of H-Y as a minor transplantation antigen: Immunol Today 3:97–106

    Google Scholar 

  • Simpson E (1984) H-2 and non H-2 Ir genes. Ann Inst Pasteur Immunol 135C:410

    Article  CAS  Google Scholar 

  • Simpson E (1986) T and B lymphocytes: two repertoires or one? Immunol Lett 12:185–193

    Article  PubMed  CAS  Google Scholar 

  • Snell GD (1948) Methods for the study of histocompatibility genes. J Genet 49:87–103

    Article  PubMed  CAS  Google Scholar 

  • Snell GD (1956) A comment on Eichwald and Silmser’s communication. Transplant Bull 3:29

    Google Scholar 

  • Tomonari K (1983) Antigen and MHC restriction specificity of two types of cloned male-specific T cell lines. J Immunol 131:1641–1645

    PubMed  CAS  Google Scholar 

  • Tomonari K (1990) Linkage between Tcrb-V and a gene responsible for deletion of Tcrb-Vll+ T cells. Immunogenetics 32:60–62

    Article  PubMed  CAS  Google Scholar 

  • Tomonari K, Fairchild S (1990) Positive selection of Tcrb-V4+CD8+ T cells by H-2d molecules. Immunogenetics 32:290–292

    PubMed  CAS  Google Scholar 

  • Tomonari K, Fairchild S (1991) The genetic basis of negative selection of Terb-Vll+ T cells. Immunogenetics 33:157–162

    Article  PubMed  CAS  Google Scholar 

  • Townsend ARM, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognised by cytotoxic T lymphocytes can be defined by short synthetic peptides. Cell 44:959–968

    Article  PubMed  CAS  Google Scholar 

  • Van Els CACM, Bakker A, Zwinderman AH, Zwaan FE, van Rood JJ, Goukny E (1990a) Effector mechanisms in graft-vs-host disease in response to minor histocompatibility antigens. I. Absence of correlation with cytotoxic effector cells. Transplantation 50:62–66

    Article  PubMed  Google Scholar 

  • Van Els CACM, Bakker A, Zwinderman AH, Zwaan FE, van Rood J J, Goulmy E (1990b) Effector mechanisms in graft-vs-host disease in response to minor histocompatibility antigens. II. Evidence for a possible involvement of proliferative T cells. Transplantation 50:67–71

    Article  PubMed  Google Scholar 

  • Vidovic D, Matzinger P (1988) Unresponsiveness to a foreign antigen can be caused by self-tolerance. Nature 336:222–225

    Article  PubMed  CAS  Google Scholar 

  • White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P (1989) The Vβ-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56:27–35

    Article  PubMed  CAS  Google Scholar 

  • Woodland D, Happ MP, Bill J, Palmer E (1990) Requirement for cotolerogenic gene products in the clonal deletion of I-E reactive T-cells. Science 247:964–967

    Article  PubMed  CAS  Google Scholar 

  • Woodland DL, Happ MP, Gollob KJ, Palmer E (1991) An endogenous retrovirus mediating deletion of αβ T cells? Nature 349:529–531

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simpson, E. (1993). Minor Transplantation Antigens. In: Solheim, B.G., Ferrone, S., Möller, E. (eds) The HLA System in Clinical Transplantation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77506-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77506-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77508-6

  • Online ISBN: 978-3-642-77506-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics