Skip to main content

Mechanism of Nematocyst Discharge and Its Cellular Control

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 15))

Abstract

Cnidarians possess unique intracellular organelles, cnidae, which discharge by evaginating their tubular contents following certain appropriate stimuli. Every cnida consists of a capsule, a tubule or shaft, or combination of the two, and intracapsular fluid and is contained in a cell called a cnidocyte. Cnidae are divided into three major categories: nematocysts, spirocysts, and ptychocysts (Mariscal 1984). The cell containing a nematocyst, spirocyst, or ptychocyst is called a nematocyte, spirocyte, or ptychocyte, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeme BL, Stidwill RP, Tardent P (1991) Nematocysts discharge in Hydra does not require the presence of nerve cells. J Exp Zool 258:137–141

    Google Scholar 

  • Anderson PAV, McKay MC (1987) The electrophysiology of cnidocytes. J Exp Biol 133:215–230

    Google Scholar 

  • Bigger CH (1982) The cellular basis of the aggressive acrorhagial response of sea anemones. J Morphol 173:259–278

    Google Scholar 

  • Blanquet R (1968) Properties and composition of the nematocyst toxin of the sea anemone, Aiptasia pallida. Comp Biochem Physiol 25:893–902

    PubMed  CAS  Google Scholar 

  • Blanquet R (1970) Ionic effects on discharge of the isolated and in situ nematocysts of the sea anemone, Aiptasia pallida: a possible role of calcium. Comp Biochem Physiol 35:451–461

    CAS  Google Scholar 

  • Blanquet R, Lenhoff HM (1966) A disulfide-linked collagenous protein of nematocyst capsules. Science 154:152–153

    PubMed  CAS  Google Scholar 

  • Carré D (1980) Hypothesis on the mechanism of cnidocyst discharge. Eur J Cell Biol 20:265–271

    PubMed  Google Scholar 

  • Clark SD, Cook CB (1986) Inhibition of nematocyst discharge during feeding in the colonial hydroid Halocordyle disticha (= Pennaria tiarella): the role of previous prey-killing. Biol Bull 171:405–416

    Google Scholar 

  • Conklin EJ, Mariscal RN (1976) Increase in nematocyst and spirocyst discharge in a sea anemone in response to mechanical stimulation. In: Mackie GO (ed) Coelenterate ecology and behaviour. Plenum Press, New York, pp 549–558

    Google Scholar 

  • Cormier SM, Hessinger DA (1980a) Cellular basis for tentacle adherence in the Portuguese man-of-war (Physalia physalis). Tissue Cell 12:713–721

    PubMed  CAS  Google Scholar 

  • Cormier SM, Hessinger DA (1980b) Cnidocil apparatus: sensory receptor of Physalia nematocytes. J Ultrastruct Res 72:13–19

    PubMed  CAS  Google Scholar 

  • Davenport D, Ross DM, Sutton L (1961) The remote control of nematocyst discharge in the attachment of Calliactis parasitica to shells of hermit crabs. Vie Milieu 12:197–209

    Google Scholar 

  • Gerke I, Zierold K, Weber J, Tardent P (1991) The spatial distribution of cations in nematocytes of Hydra vulgaris. In: Williams RB, Cornelius PFS, Hughes RG, Robson EA (eds) Coelenterate biology: recent research on cnidaria and ctenophora. Kluwer, Dordrecht, pp 661–669

    Google Scholar 

  • Giebel GEM, Thorington GU, Lim RY, Hessinger DA (1988) Control of cnida discharge: II. Microbasic p-mastigophore nematocysts are regulated by two classes of chemoreceptors. Biol Bull 175:132–136

    Google Scholar 

  • Glaser OC, Sparrow CM (1909) The physiology of nematocysts. J Exp Zool 6:361–382

    Google Scholar 

  • Godknecht A, Tardent P (1988) Discharge and mode of action of the tentacular nematocysts of Anemonia sulcata (Anthozoa: Cnidaria). Mar Biol 100:83–92

    Google Scholar 

  • Greenwood PG, Garrity LK (1991) Discharge of nematocysts isolated from aeolid nudibranchs. In: Williams RB, Cornelius PFS, Hughes RG, Robson EA (eds) Coelenterate biology: recent research on cnidaria and ctenophora. Kluwer, Dordrecht, pp 671–677

    Google Scholar 

  • Grosvenor W, Kass-Simon G (1987) Feeding behavior in Hydra. I. Effects of Artemia homogenate on nematocyst discharge. Biol Bull 173:527–538

    Google Scholar 

  • Gupta BL, Hall TA (1984) Role of high concentration of Ca, Cu, and Zn in the maturation and discharge in situ of sea anemone nematocysts as shown by X-ray microanalysis of cryosections. In: Bolis L, Zadunaisky J, Gilles R (eds) Toxins, drugs, and pollutants in marine animals. Springer, Berlin Heidelberg New York, pp 77–95

    Google Scholar 

  • Hausmann K, Holstein T (1985) Sensory receptor with bilateral symmetrical polarity. Naturwissenschaften 72:145–147

    Google Scholar 

  • Hessinger DA, Lenhoff HM (1973) Assay and properties of the hemolysis activity of pure venom from the nematocysts of the acontia of the sea anemone Aiptasia pallida. Arch Biochem Biophys 159:629–638

    CAS  Google Scholar 

  • Hidaka M (1983) Effects of certain physico-chemical agents on the mechanical properties of the catch apparatus of the sea-urchin spine. J Exp Biol 103:15–29

    CAS  Google Scholar 

  • Hidaka M (1990) Effects of calcium on the mechanical properties of the capsule wall of isolated nematocysts. Zool Sci 7:1041

    Google Scholar 

  • Hidaka M (1992) Effects of Ca2+ on the volume of nematocysts isolated from acontia of the sea anemone Calliactis tricolor. Comp Biochem Physiol 101A:737–741

    CAS  Google Scholar 

  • Hidaka M, Mariscal RN (1988) Effects of ions on nematocysts isolated from acontia of the sea anemone Calliactis tricolor by different methods. J Exp Biol 136:23–34

    CAS  Google Scholar 

  • Holstein T, Tardent P (1984) An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 223:830–833

    PubMed  CAS  Google Scholar 

  • Hufnagel LA, Kass-Simon G (1988) Functional anatomy of nematocyte innervation in battery cell complexes of the Hydra tentacle. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 519–529

    Google Scholar 

  • Hufnagel LA, Kass-Simon G, Lyon MK (1985) Functional organization of battery cell complexes in tentacles of Hydra attenuata. J Morphol 184:323–341

    Google Scholar 

  • Kass-Simon G (1988) Towards a neuroethology of nematocyst discharge in the tentacles of hydra. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 531–541

    Google Scholar 

  • Klug M, Weber J, Tardent P (1989) Hemolytic and toxic properties of Hydra attenuata nematocysts. Toxicon 27:325–339

    PubMed  CAS  Google Scholar 

  • Lentz TL, Barrnett RJ (1961) Enzyme histochemistry of hydra. J Exp Zool 147:125–149

    PubMed  CAS  Google Scholar 

  • Lentz TL, Barrnett RJ (1962) The effect of enzyme substrates and pharmacological agents on nematocyst discharge. J Exp Zool 149:33–38

    PubMed  CAS  Google Scholar 

  • Lubbock R (1979) Chemical recognition and nematocyte excitation in a sea anemone. J Exp Biol 83:283–292

    CAS  Google Scholar 

  • Lubbock R, Amos WB (1981) Removal of bound calcium from nematocyst contents causes discharge. Nature 290:500–501

    PubMed  CAS  Google Scholar 

  • Lubbock R, Shelton GAB (1981) Electrical activity following cellular recognition of self and non-self in a sea anemone. Nature 289:59–60

    PubMed  CAS  Google Scholar 

  • Lubbock R, Gupta BL, Hall TA (1981) Novel role of calcium in exocytosis: mechanism of nematocyst discharge as shown by X-ray microanalysis. Proc Natl Acad Sci USA 78:3624–3628

    PubMed  CAS  Google Scholar 

  • Mariscal RN (1972) The nature of the adhesion to shells of the symbiotic sea anemone Calliactis tricolor (Leseur). J Exp Mar Biol Ecol 8:217–224

    Google Scholar 

  • Mariscal RN (1973) The control of nematocyst discharge during feeding by sea anemones. Publ Seto Mar Biol Lab 20:695–702

    Google Scholar 

  • Mariscal RN (1974) Nematocysts. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology: reviews and new perspectives. Academic Press, London, pp 129–178

    Google Scholar 

  • Mariscal RN (1980) The elemental composition of nematocysts as determined by X-ray microanalysis. In: Tardent P, Tardent R (eds) Developmental and cellular biology of coelenterates. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 337–342

    Google Scholar 

  • Mariscal RN (1984) Cnidaria: Cnidae. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York, pp 57–68

    Google Scholar 

  • Mariscal RN (1988) X-ray microanalysis and perspectives on the role of calcium and other elements in cnidae. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 95–113

    Google Scholar 

  • Mariscal RN, Bigger CH, McLean RB (1976) The form and function of cnidarian spirocysts. 1. Ultrastructure of the capsule exterior and relationship to the tentacle sensory surface. Cell Tissue Res 168:465–474

    PubMed  CAS  Google Scholar 

  • Mariscal RN, Conklin EJ, Bigger CH (1978) The putative sensory receptors associated with the cnidae of cnidarians. Scanning Electron Microsc 11:959–966

    Google Scholar 

  • McFarlane ID, Shelton GAB (1975) The nature of the adhesion of tentacles to shells during shell-climbing in the sea anemone Calliactis parasitica (Couch). J Exp Mar Biol Ecol 19:177–186

    Google Scholar 

  • McKay MC, Anderson PAV (1988a) On the preparation and properties of isolated cnidocytes and cnidae. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 273–293

    Google Scholar 

  • McKay MC, Anderson PAV (1988b) Preparation and properties of cnidocytes from the sea anemone Anthopleura elegantissima. Biol Bull 174:47–53

    Google Scholar 

  • Motokawa T (1984) Connective tissue catch in echinoderms. Biol Rev 59:255–270

    Google Scholar 

  • Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77:5725–5729

    CAS  Google Scholar 

  • Pantin CFA (1942) The excitation of nematocysts. J Exp Biol 19:294–310

    Google Scholar 

  • Parker GH, Van Alstyne MA (1932) The control and discharge of nematocysts, especially Metridium and Physalia. J Exp Zool 63:329–344

    Google Scholar 

  • Phelan MA, Blanquet RS (1985) Characterization of nematocyst proteins from the sea anemones Aiptasia pallida and Pachycerianthus torreyi (Cnidaria: Anthozoa). Comp Biochem Physiol 81B:661–666

    CAS  Google Scholar 

  • Picken LER, Skaer RJ (1966) A review of researches on nematocysts. Symp Zool Soc Lond 16:19–50

    Google Scholar 

  • Rifkin JF (1982) Use of electrical stimulation for discharging cnidom components of a species of Cerianthus (Anthozoa: Cnidaria). Mar Biol 69:31–36

    Google Scholar 

  • Rifkin JF, Endean R (1988) Arrangement of accessory cells and nematocytes bearing mastigophores in the tentacles of the cubozoan Chironex fleckeri. J Morphol 195: 103–115

    Google Scholar 

  • Rigby BJ, Hirai N, Spikes JD, Eyring H (1959) The mechanical properties of rat tail tendon. J Gen Physiol 43:265–283

    PubMed  CAS  Google Scholar 

  • Robson EA (1973) The discharge of nematocysts in relation to properties of the capsule. Publ Seto Mar Biol Lab 20:653–673

    Google Scholar 

  • Ross DM, Satton L (1964) Inhibition of the swimming response by food and of nematocyst discharge during swimming in the sea anemone Stomphia coccinea. J Exp Biol 41:741–757

    Google Scholar 

  • Ruch RJ, Cook CB (1984) Nematocyst inactivation during feeding in Hydra littoralis. J Exp Biol 111:31–42

    Google Scholar 

  • Salleo A (1984) Discharge mechanism of the nematocysts of Pelagia noctiluca. In: Bolis L, Zadunaisky J, Gilles R (eds) Toxins, drugs, and pollutants in marine animals. Springer, Berling Heidelberg New York, pp 63–76

    Google Scholar 

  • Salleo A, La Spada G, Alfa M (1983) Blockage of trypsin-induced discharge of nematocysts of Pelagia noctiluca by Ca2+. Mol Physiol 3:89–97

    CAS  Google Scholar 

  • Salleo A, La Spada G, Falzea G, Denaro MG (1984a) pH-induced collapse of the capsular wall in isolated nematocysts of Pelagia noctiluca. Cell Mol Biol 30:91–94

    PubMed  CAS  Google Scholar 

  • Salleo A, La Spada G, Falzea G, Denaro MG (1984b) Discharging effect of anions and inhibitory effect of divalent cations on isolated nematocysts of Pelagia noctiluca. Mol Physiol 5:25–34

    CAS  Google Scholar 

  • Salleo A, La Spada G, Denaro MG, Falzea G (1986) Effects produced by SCN− and thioglycolate on isolated nematocysts of Pelagia noctiluca. Cell Mol Biol 32:661–666

    PubMed  CAS  Google Scholar 

  • Salleo A, La Spada G, Denaro MG (1988a) Release of free Ca2+ from the nematocysts of Aiptasia mutabilis during the discharge. Physiol Zool 61:272–279

    Google Scholar 

  • Salleo A, La Spada G, Denaro MG, Falzea G (1988b) Dynamics of release of free calcium during the discharge of holotrichous isorhiza of nematocysts of Pelagia noctiluca. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 551–565

    Google Scholar 

  • Salleo A, La Spada G, Robson EA (1990) Discharge characteristics of nematocysts isolated from acontia of Calliactis parasitica. Mar Biol 104:459–464

    Google Scholar 

  • Sandberg DM, Kanciruk P, Mariscal RN (1971) Inhibition of nematocyst discharge correlated with feeding in a sea anemone, Calliactis tricolor (Leseur). Nature 232: 263–264

    PubMed  CAS  Google Scholar 

  • Santoro G, Salleo A (1991) The discharge of in situ nematocysts of the acontia of Aiptasia mutabilis is a Ca2+-induced response. J Exp Biol 156:173–185

    CAS  Google Scholar 

  • Skaer RJ, Picken LER (1965) The structure of the nematocyst thread and the geometry of discharge in Corynactis viridis Allman. Philos Trans R Soc Lond B 250:131–164

    Google Scholar 

  • Slautterback DB (1967) The cnidoblast-musculoepithelial cell complex in the tentacles of Hydra. Z Zellforsch 79:296–318

    PubMed  CAS  Google Scholar 

  • Smith S, Oshida J, Bode H (1974) Inhibition of nematocyst discharge in hydra fed to repletion. Biol Bull 147:186–202

    Google Scholar 

  • Stidwill RP, Honegger TG (1989) A single layer of microtubules is part of a complex cytoskeleton in mature nematocytes of hydra. Tissue Cell 21:179–188

    PubMed  CAS  Google Scholar 

  • Stidwill RP, Honegger TG, Tardent P (1988) Polymerized actin in the apical region of hydra nematocytes. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 567–574

    Google Scholar 

  • Tardent P (1988) History and current state of knowledge concerning discharge of cnidae. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 309–332

    Google Scholar 

  • Tardent P, Holstein T (1982) Morphology and morphodynamics of the stenotele nematocyst of Hydra attenuata Pall. (Hydrozoa, Cnidaria). Cell Tissue Res 224:269–290

    PubMed  CAS  Google Scholar 

  • Tardent P, Zierold K, Weber J, Gerke I (1990a) Metal cations in the nematocysts of cnidaria. Experientia 46:A47

    Google Scholar 

  • Tardent P, Zierold K, Klug M, Weber J (1990b) X-ray microanalysis of elements present in the matrix of cnidarian nematocysts. Tissue Cell 22:629–643

    PubMed  CAS  Google Scholar 

  • Thorington GU, Hessinger DA (1988a) Control of discharge: factors affecting discharge of cnidae. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 233–253

    Google Scholar 

  • Thorington GU, Hessinger DA (1988b) Control of cnida discharge: I. Evidence for two classes of chemoreceptor. Biol Bull 174:163–171

    CAS  Google Scholar 

  • Thorington GU, Hessinger DA (1990) Control of cnida discharge: III. Spirocysts are regulated by three classes of chemoreceptors. Biol Bull 178:74–83

    Google Scholar 

  • Watson GM, Hessinger DA (1988) Localization of a purported chemoreceptor involved in triggering cnida discharge in sea anemones. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 255–272

    Google Scholar 

  • Watson GM, Hessinger DA (1989a) Cnidocytes and adjacent supporting cells from receptor-effector complexes in anemone tentacles. Tissue Cell 21:17–24

    PubMed  CAS  Google Scholar 

  • Watson GM, Hessinger DA (1989b) Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors. Science 243:1589–1591

    PubMed  CAS  Google Scholar 

  • Watson GM, Hessinger DA (1990) Frequency-specificity of vibration-sensitive mechanoreceptors in sea anemone tentacles. Am Zool 30:82A

    Google Scholar 

  • Watson GM, Mariscal RN (1985) Ultrastructure of nematocyst discharge in catch tentacles of the sea anemone Haliplanella luciae (Cnidaria: Anthozoa). Tissue Cell 17:199–213

    PubMed  CAS  Google Scholar 

  • Weber J (1989) Nematocysts (stinging capsules of Cnidaria) as Donnan-potential-dominated osmotic systems. Eur J Biochem 184:465–476

    PubMed  CAS  Google Scholar 

  • Weber J (1990) Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 265:9664–9669

    PubMed  CAS  Google Scholar 

  • Weber J (1991) A novel kind of polyanions as principal components of cnidarian nematocysts. Comp Biochem Physiol 98A:285–291

    Google Scholar 

  • Weber J, Klug M, Tardent P (1987a) Some physical and chemical properties of purified nematocysts of Hydra attenuata Pall. (Hydrozoa, Cnidaria). Comp Biochem Physiol 88B:855–862

    CAS  Google Scholar 

  • Weber J, Klug M, Tardent P (1987b) Detection of high concentration of Mg and Ca in the nematocysts of various cnidarians. Experientia 43:1022–1025

    CAS  Google Scholar 

  • Weber J, Klug M, Tardent P (1988) Chemistry of hydra nematocysts. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts. Academic Press, San Diego, pp 427–444

    Google Scholar 

  • Westfall JA (1965) Nematocysts of the sea anemone Metridium. Am Zool 5:377–393

    PubMed  CAS  Google Scholar 

  • Westfall JA (1970a) The nematocyte complex in a hydromedusan, Gonionemus vertens. Z Zellforsch 110:457–470

    PubMed  CAS  Google Scholar 

  • Westfall JA (1970b) Ultrastructure of synapses in a primitive coelenterate. J Ultrastruct Res 32:237–246

    PubMed  CAS  Google Scholar 

  • Westfall JA (1973) Ultrastructural evidence for a granule-containing sensory-motorinterneuron in Hydra littoralis. J Ultrastruct Res 42:268–282

    PubMed  CAS  Google Scholar 

  • Westfall JA, Kinnamon JC (1978) A second sensory-motor-interneuron with neurosecretory granules in Hydra. J Neurocytol 7:365–379

    PubMed  CAS  Google Scholar 

  • Westfall JA, Kinnamon JC (1984) Perioral synaptic connections and their possible role in the feeding behavior of Hydra. Tissue Cell 16:355–365

    PubMed  CAS  Google Scholar 

  • Westfall JA, Yamataka S, Enos PD (1971) Ultrastructural evidence of polarized synapses in the nerve net of Hydra. J Cell Biol 51:318–323

    PubMed  CAS  Google Scholar 

  • Wood RL, Novak PL (1982) The anchoring of nematocysts and nematocytes in the tentacles of hydra. J Ultrastruct Res 81:104–116

    PubMed  CAS  Google Scholar 

  • Yanagita TM (1943) Discharge of nematocysts. J Fac Sci Tokyo Imp Univ Sec IV 6:97–108

    Google Scholar 

  • Yanagita TM (1959a) Physiological mechanism of nematocyst responses in sea-anemone. I. Effects of trypsin and thioglycolate upon the isolated nematocysts. Jpn J Zool 12:361–375

    Google Scholar 

  • Yanagita TM (1959b) Physiological mechanism of nematocyst responses in sea-anemone. II. Effects of electrolyte ions upon the isolated cnidae. J Fac Sci Univ Tokyo Sec IV 8:381–400

    Google Scholar 

  • Yanagita TM (1960a) Physiological mechanism of nematocyst responses in sea-anemone. III. Excitation and anaesthetization of the nettling response system. Comp Biochem Physiol 1:123–139

    CAS  Google Scholar 

  • Yanagita TM (1960b) Physiological mechanism of nematocyst responses in sea-anemone. IV. Effects of surface-active agents on the cnidae in situ and in isolation. Comp Biochem Physiol 1:140–154

    CAS  Google Scholar 

  • Yanagita TM, Wada T (1953) Discharge-inducing concentrations of acids and bases for the nematocysts of sea-anemone. Nat Sci Rep Ochanomizu Univ 4:112–118

    CAS  Google Scholar 

  • Yanagita TM, Wada T (1954) Effects of trypsin and thioglycolate upon the nematocysts of the sea anemone. Nature (Lond) 23:171

    Google Scholar 

  • Yu S-M, Westfall JA, Dunne JF (1985) Light and electron microscopic localization of a monoclonal antibody in neurons in situ in the head region of Hydra. J Morphol 184:183–193

    PubMed  CAS  Google Scholar 

  • Zierold K, Gerke I, Schmitz M (1989) X-ray microanalysis of fast exocytotic processes. In: Zierold K, Hagler HK (eds) Electron microprobe analysis: applications in biology and medicine. Springer, Berlin Heidelberg New York, pp 281–292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hidaka, M. (1993). Mechanism of Nematocyst Discharge and Its Cellular Control. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77528-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77528-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77530-7

  • Online ISBN: 978-3-642-77528-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics