Skip to main content

Part of the book series: Springer Labor ((SPRINGER LABOR))

  • 461 Accesses

Zusammenfassung

Sulfatasen sind bei der Mineralisierung schwefelhaltiger Verbindungen im Boden von Bedeutung. Sie hydrolysieren organische Sulfate und stellen dadurch Schwefel in pflanzenverfügbarer Form bereit (Freney et al. 1975). Sulfatasen sind größtenteils mikrobiellen Urspungs. Sie liegen im Boden auch als Exoenzyme vor und weisen eine enge Beziehung zur organischen Substanz auf. In der Natur kommen verschiedene Sulfatasetypen vor (Tabatabai 1982): Arylsulfatasen, Alkylsulfatasen, Steroidsulfatasen, Glucosesulfatasen, Chon-drosulfatasen und Myrosulfatasen. Da die Arylsulfatase als erste unter den erwähnten Gruppen entdeckt wurde, wurde ihr die größere Aufmerksamkeit zugewandt. Sie katalysiert die Hydrolyse eines Arylsulfatanions durch Spaltung der O-S-Bindung. Im Boden wurde die Arylsulfatase erstmals von Tabatabai und Bremner (1970) bestimmt. Methodische und angewandte Untersuchungen erfolgten u.a. von Speir und Ross (1975, 1978), Speir (1977), Al Khafaji und Tabatabai (1979), Speir et al. (1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alef K, Kleiner D (1989) Rapid and sensitive determination of microbial activity in soils and in soil aggregates by dimethylsulfoxide reduction. Biol Fertil Soils 8:349–355

    Article  CAS  Google Scholar 

  • Al-Khafaji AA, Tabatabai MA (1979) Effects of trace elements on arylsulfatase activity in soils. Soil Sci 127:129–133

    Article  CAS  Google Scholar 

  • Andreae MO (1980) Dimethylsulphoxide in marine and freshwater. Limnol Oceanogr 25:1054–1063

    Article  CAS  Google Scholar 

  • Andreae MO, Raemdonck H (1983) Dimethylsulphide in surface ocean and the marine atmosphere: A global view. Science 221:744–747

    Article  PubMed  CAS  Google Scholar 

  • Barret EL (1985) Bacterial reduction of trimethylamine oxide. Ann Rev Microbiol 39:131–149

    Article  Google Scholar 

  • Freney JR, Melville GE, Williams CH (1975) Soil organic matter fractions as sources of plant available sulphur. Soil Biol Biochem 7:217–221

    Article  CAS  Google Scholar 

  • Gibson RM, Large PJ (1985) The methionine sulphoxide reductase activity of the yeast dimethylsulphoxide reductase system. FEMS Microbiol Lett 26:95–99

    Article  CAS  Google Scholar 

  • Speir TW (1977) Studies on a climosequence of soils in tussock grasslands. New Zealand J Sci 20:151–166

    CAS  Google Scholar 

  • Speir TW, Lee R, Pansier EA, Cairns A (1980) A comparison of sulfatase, urease and protease activities in planted and in fallow soils. Soil Biol Biochem 12:281–291

    Article  CAS  Google Scholar 

  • Speir TW, Ross DJ (1975) Effects of storage on the activities of protease, urase, phosphatase and sulfatase in three soils under pasture. New Zealand J Sci 18:231–237

    CAS  Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil Enzymes. Academic Press, London New York San Francisco, p 197

    Google Scholar 

  • Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulpher compounds. Arch Microbiol 146:192–198

    Article  CAS  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 903

    Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Soc Am Proc 34:225–229

    Article  CAS  Google Scholar 

  • Wood PM (1981) The redox potential for dimethylsulphoxide reduction to dimethylsulphide. FEBS Lett 124:11–14

    Article  PubMed  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978) Dimethylsulphoxide reduction by microorganisms. J Gen Microbiol 105:335–342

    PubMed  CAS  Google Scholar 

Literatur

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Soc Am Proc 34:225–229

    Article  CAS  Google Scholar 

Literatur

  • Alef K, Kleiner D (1989) Rapid and sensitive determination of microbial activity in soils and in soil aggregates by dimethylsulfoxide reduction. Biol Fertil Soils 8:349–355

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobl, W., Traunmüller, M., Kandeler, E. (1993). Schwefelkreislauf. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds) Bodenbiologische Arbeitsmethoden. Springer Labor. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77936-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77936-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77937-4

  • Online ISBN: 978-3-642-77936-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics