Skip to main content

On the Synthesis and Processing of Fractal Signals and Images

  • Conference paper
Applications of Fractals and Chaos

Abstract

This paper discusses some of the techniques available for synthesizing and processing random fractal signals and images. The methods presented are derived from a Fourier-based description of a random scaling fractal and are therefore able to utilize a Fast Fourier Transform. This provides the potential for constructing a real time facility by implementing available DSP hardware, the principal criterion for developing the techniques presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman, H., Tables of Integral Transforms, Volume II, New York: McGraw-Hill, 1954.

    Google Scholar 

  2. Blackledge, J.M., Quantitative Coherent Imaging, London: Academic Press, 1989.

    Google Scholar 

  3. Brammer, R.F., Unified image computing based on fractals and chaos models, Optical Engng., Vol. 28, No. 7, pp. 726–734.

    Google Scholar 

  4. Burl, M.C., Owirka, G.J., and Novak, L.M., Texture discrimination in SAR imagery, 23rd Asilomar Conf. on Signals, Systems and Computers, Vol. 1, pp. 399–404, 1989.

    Google Scholar 

  5. Dennis, T.J., and Dessipris, N.G., Fractal modelling in image texture and analysis, IEEE Proc, Vol. 136, F(5), pp. 227–235, 1989.

    Google Scholar 

  6. Dold, A., and Eckmann, B., Fractional Calculus and its Applications, Lecture Notes in Mathematics, 457, Heidelberg: Springer-Verlag, 1974.

    Google Scholar 

  7. Fairhurst, M.C., Computer Vision for Robotic Systems, Englewood Cliffs, NJ: Prentice-Hall, 1988.

    Google Scholar 

  8. Feder, J., Fractals, New York: Plenum Press, 1988.

    Book  MATH  Google Scholar 

  9. Funakubo, N., Fractal based analysis and interpolation of 3D natural shapes, Cornput. Vision, Graph. and Image Process., Vol. 46, pp. 284–302, 1989.

    Article  Google Scholar 

  10. Gadallah, M.E., “Data Compression Techniques for Isolated and Connected Word Recognition” Ph.D. dissertation, Cranfield Institute of Technology, UK, 1991.

    Google Scholar 

  11. Jones, D.S., Generalized Functions, New York: McGraw-Hill, 1966.

    Google Scholar 

  12. Keller, J.M., and Chen, S., Texture description and segmentation through fractal geometry, Comput. Vision, Graph. and Image Process., Vol. 45, pp. 150–166, 1989.

    Article  Google Scholar 

  13. Knill, D.C., Field, D., and Kersten, D., Human discrimination of fractal images, Jour. Optical Soc. of America, Vol. 7, No. 6, pp. 1113–1123, 1990.

    Article  Google Scholar 

  14. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: W.H. Freeman, p. 310, 1983.

    Google Scholar 

  15. Marr, D., and Hildreth, E., On the theory of edge detection, Proc. Roy. Soc. London Ser. B, Vol. 207, pp. 127–217, 1980.

    Article  Google Scholar 

  16. Mitchell, R.L., Radar Signal Simulation, MARK Resources, 1985.

    Google Scholar 

  17. Oldham, K.B., and Spanier, J., The fractional calculus, Mathematics in Science and Engineering, Volume III, New York: Academic Press, 1974.

    MATH  Google Scholar 

  18. Peitgen, H.-O., and Saupe, D., Eds., The Science of Fractal Images, New York: Springer-Verlag, 1988.

    MATH  Google Scholar 

  19. Peleg, S., Naor, J., Hartley, R., and Avnir, D., Multiple resolution texture analysis and classification, IEEE Trans. Patt. Anal. Mach. Intell., Vol. 6, No. 4, pp. 518–523, 1984.

    Article  Google Scholar 

  20. Peli, T., Multiscale fractal theory and object characterization, Jour. Optical Soc. of America, Vol. 7, No. 6, pp. 1101–1112, 1990.

    Article  Google Scholar 

  21. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes, Cambridge, UK: Cambridge Univ. Press, 1987.

    Google Scholar 

  22. Stromberg, W.D., and Farr, T.G., A Fourier-based textural feature extraction procedure, IEEE Trans. on Geoscience and Remote Sensing, Vol. 24, No. 5, pp. 722–731, 1986.

    Article  Google Scholar 

  23. Tatom, F.B., The application of fractional calculus to the simulation of stochastic processes, AIAA Jour., Vol. 89, pp. 1–7, 1989.

    Google Scholar 

  24. Yokoya, N., and Yamamoto, K., Fractal based analysis and interpolation of 3D natural surface shapes, Comput. Vision, Graph. and Image Process., Vol. 46, pp. 284–302, 1989.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blackledge, J.M. (1993). On the Synthesis and Processing of Fractal Signals and Images. In: Crilly, A.J., Earnshaw, R.A., Jones, H. (eds) Applications of Fractals and Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78097-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78097-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78099-8

  • Online ISBN: 978-3-642-78097-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics