Skip to main content

GTPases and Actin as Targets for Bacterial Toxins

  • Chapter
GTPases in Biology I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 1))

Abstract

It has been discussed in detail in various other chapters of this volume how multiple GTPases operate as switches and amplifiers to control signal transduction, cell motile functions, differentiation, and/or proliferation of cells. These GTPases are sensitive targets for bacterial ADP-ribosylating toxins. Studies within the last three decades have greatly increased our knowledge about the structure and functions of these ADP-ribosylating toxins and their pathogenetic role in diseases. Moreover, ADP-ribosylating toxins have proved to be invaluable tools in identifying their protein substrates (GTPases) and in studying the physiological functions of these eukaryotic regulatory proteins. The usefulness of the toxins as biochemical instruments is based on the following properties: with few exceptions, these extremely potent agents are able to enter intact cells and/or to covalently modify the target GTPase with high selectivity, thereby inhibiting or enhancing signal pathways or regulatory mechanisms which are controlled by GTPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood ME, Hurley JB, Pappone M-C, Bourne HR, Stryer L (1982) Functional homology between signal-coupling proteins: cholera toxin inactivates the GTPase activity of transducin. J Biol Chem 257:10540–10543

    PubMed  CAS  Google Scholar 

  • Aktories K, Frevert J (1987) ADP-ribosylation of a 21–24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247:363–368

    PubMed  CAS  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    PubMed  CAS  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986a) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162

    PubMed  CAS  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986b) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    PubMed  CAS  Google Scholar 

  • Aktories K, Weiler U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    PubMed  CAS  Google Scholar 

  • Aktories K, Just I, Rosenthal W (1988a) Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun 156:361–367

    PubMed  CAS  Google Scholar 

  • Aktories K, Rösener S, Blaschke U, Chhatwal GS (1988b) Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. Eur J Biochem 172:445–450

    PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rösener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Habermann B, Rösener S (1990) Botulinum ADP-ribosyltransferase C3. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 97–115

    Google Scholar 

  • Aktories K, Mohr C, Koch G (1992a) Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol Immunol 175:115–131

    PubMed  CAS  Google Scholar 

  • Aktories K, Wille M, Just I (1992b) Clostridial actin-ADP-ribosylating toxins. Curr Top Microbiol Immunol 175:97–113

    PubMed  CAS  Google Scholar 

  • Allured VS, Collier RJ, Carroll SF, McKay DB (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3,0-Angström resolution. Proc Natl Acad Sci USA 83:1320–1324

    PubMed  CAS  Google Scholar 

  • Barbacid M (1987) ras Genes. Annu Rev Biochem 56:779–827

    PubMed  CAS  Google Scholar 

  • Barbacid M (1990) ras Oncogenes: their role in neoplasia. Eur J Clin Invest 20: 225–235

    PubMed  CAS  Google Scholar 

  • Barbieri JT, Mende-Mueller M, Rappuoli R, Collier RJ (1989) Photolabeling of glu-129 of the S-1 subunit of pertussis toxin with NAD. Infect Immun 57:3549–3554

    PubMed  CAS  Google Scholar 

  • Bermek E (1976) Interactions of adenosine diphosphate-ribosylated elongation factor 2 with ribosomes. J Biol Chem 251:6544–6549

    PubMed  CAS  Google Scholar 

  • Bershadsky, AD, Vasiliev JM (1988) Cytoskeleton. Plenum, New York

    Google Scholar 

  • Birnbaumer L (1990) G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:675–705

    PubMed  CAS  Google Scholar 

  • Bobak DA, Nightingale MS, Murtagh JJ, Price SR, Moss J, Vaughan M (1989) Molecular cloning, characterization, and expression of human ADP-ribosylation factor: two guanine nucleotide dependent activators of cholera toxin. Proc Natl Acad Sci USA 86:6101–6105

    PubMed  CAS  Google Scholar 

  • Bobak DA, Bliziotes MM, Noda M, Tsai S-C, Adamik R, Moss J (1990) Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): Both low-and high-affinity interactions of ARF with guanine nucleotides promote toxin activation. Biochemistry 29:855–861

    PubMed  CAS  Google Scholar 

  • Bodley JW, Veldham SA (1990) Biosynthesis of Diphthamide: ADP-ribose acceptor for diphtheria toxin. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins: insights into signal transduction. American Society for Microbiology, Washington, pp 21–30

    Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    PubMed  CAS  Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76

    PubMed  CAS  Google Scholar 

  • Brenner SL, Korn ED (1980) The effects of Cytochalasins on actin Polymerization and actin ATPase provide insights into the mechanism of Polymerization. J Biol Chem 255:841–844

    PubMed  CAS  Google Scholar 

  • Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P (1992) Stimulation of phospholipase C by guanine-nucleotide-binding protein β/v subunits. Eur J Biochem 206:821–831

    PubMed  CAS  Google Scholar 

  • Capiau C, Petre J, van Damme J, Puype M, Vandekerckhove J (1986) Protein-chemical analysis of pertussis toxin reveals homology between the subunits S as the haptoglobin-binding subunit. FEBS Lett 204:336–340

    PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1984) NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc Natl Acad Sci USA 81:3307–3311

    PubMed  CAS  Google Scholar 

  • Carroll SF, Collier RJ (1988) Amino acid sequence homology between the enzymic domains of diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Mol Microbiol 2:293–296

    PubMed  CAS  Google Scholar 

  • Carroll SF, McCloskey JA, Crain PF, Oppenheimer NJ, Marschner TM, Collier RJ (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148. Proc Natl Acad Sci USA 82:7237–7241

    PubMed  CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad USA 75:2669–2673

    CAS  Google Scholar 

  • Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74:3307–3311

    PubMed  CAS  Google Scholar 

  • Chang F-H, Bourne HR (1989) Cholera toxin induces cAMP-independent degradation of Gs. J Biol Chem 264:5352–5357

    PubMed  CAS  Google Scholar 

  • Chang PP, Moss J, Twiddy EM, Holmes RK (1987) Type II heat-labile enterotoxin of Escherichia coli activites adenylate cyclase in human fibroblasts by ADP-ribosylation. Infect Immun 55:1854–1858

    PubMed  CAS  Google Scholar 

  • Chardin P, Madaule P, Tavitian A (1988) Coding sequence of human rho cDNAs clone 6 and clone 9. Nucleic Acids Res 16:2717

    PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J 8: 1087–1092

    PubMed  CAS  Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PMG, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    PubMed  CAS  Google Scholar 

  • Chuang DM, Weissbach H (1972) Studies on elongation factor II from calf brain. Arch Biochem Biophys 152:114–124

    PubMed  CAS  Google Scholar 

  • Chung DW, Collier RJ (1977) The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim Biophys Acta 483:248–257

    PubMed  CAS  Google Scholar 

  • Coburn J (1992) Pseudomonas aeruginosa exoenzyme S. Curr Top Microbiol Immunol 175:133–143

    PubMed  CAS  Google Scholar 

  • Coburn J, Dillon ST, Iglewski BH, Gill DM (1989a) Exoenzyme S of Pseudomonas aeruginosa specifically ADP-ribosylates the intermediate filament protein vimentin. Infect Immun 57:996–998

    PubMed  CAS  Google Scholar 

  • Coburn J, Wyatt RT, Iglewski BH, Gill DM (1989b) Several GTP-binding proteins, including p21 c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264:9004–9008

    PubMed  CAS  Google Scholar 

  • Coburn J, Kane AV, Feig L, Gill DM (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266:6438–6446

    PubMed  CAS  Google Scholar 

  • Collier RJ (1968) Effect of diphtheria toxin on protein synthesis: Inactivation of one of the transfer factors. J Mol Biol 25:83–98

    Google Scholar 

  • Collier RJ (1990) Diphtheria Toxin: structure and function of a cytocidal protein. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 3–19

    Google Scholar 

  • Collier RJ, Kandel J (1971) Structure and activity of diphtheria toxin: I. Thioldependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem 246:1496–1503

    PubMed  CAS  Google Scholar 

  • Considine RV, Simpson LL (1991) Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity. Toxicon 29:913–936

    PubMed  CAS  Google Scholar 

  • Dallas WS, Falkow S (1980) Amino acid homology between cholera toxin and Escherichia coli heat-labile toxin. Nature 277:406–407

    Google Scholar 

  • Davydova EK, Ovchinnikov LP (1990) ADP-ribosylated elongation factor 2 (ADP-ribosyl-EF-2) is unable to promote translocation within the ribosome. FEBS Lett 261:350–352

    PubMed  CAS  Google Scholar 

  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel rasrelated family of proteins that are botulinum toxin substrates. J Biol Chem 264:16378–16382

    PubMed  CAS  Google Scholar 

  • Drazin R, Kandel J, Collier RJ (1971) Structure and activity of diphtheria toxin: II. Attack by trypsin at a specific site within the intact toxin molecule. J Biol Chem 246:1504–1510

    PubMed  CAS  Google Scholar 

  • Dwyer JD, Bloomfield VA (1982) Subunit arrangement of cholera toxin in solution and bound to receptor-containing model membranes. Biochemistry 21:3227–3231

    PubMed  CAS  Google Scholar 

  • Field M (1980) Role of cyclic nucleotides in enterotoxic diarrhea. Adv Cyclic Nucleotide Res 12:267–277

    PubMed  CAS  Google Scholar 

  • Fishman PH (1990) Mechanism of action of cholera toxin. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 127–140

    Google Scholar 

  • Fishman PH, Moss J, Osborne JC (1978) Interaction of choleragen with oligosaccharide of ganglioside GM: evidence for multiple oligosaccharide binding sites. Biochemistry 17:711–716

    PubMed  CAS  Google Scholar 

  • Freissmuth M, Gilman AG (1989) Mutations of Gsa designed to alter the reactivity of the protein with bacterial toxins. J Biol Chem 264:21907–21914

    PubMed  CAS  Google Scholar 

  • Fukumoto Y, Kaibuchi K, Hori Y, Fujioka H, Araki S, Ueda T, Kikuchi A, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 5:1321–1328

    PubMed  CAS  Google Scholar 

  • Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V (1988) Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heatlabile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun 56:1748–1753

    PubMed  CAS  Google Scholar 

  • Garrett MD, Self AJ, van Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras, R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    PubMed  CAS  Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem 179:229–232

    PubMed  CAS  Google Scholar 

  • Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266:335–339

    PubMed  CAS  Google Scholar 

  • Gierschik, P (1992) ADP-ribosylation of signal-transducing guanine nucleotidebinding proteins by pertussis toxin. Curr Top Microbiol Immun 175:69–96

    CAS  Google Scholar 

  • Gierschik P, Jakobs KH (1987) Receptor-mediated ADP-ribosylation of a phospholipase C-stimulating G protein. FEBS Lett 224:219–223

    PubMed  CAS  Google Scholar 

  • Gill DM (1975) Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro. Proc Natl Acad Sci USA 72:2064–2068

    PubMed  CAS  Google Scholar 

  • Gill DM (1976) The arrangement of subunits of cholera toxin. Biochemistry 15: 1242–1248

    PubMed  CAS  Google Scholar 

  • Gill DM (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8:85–118

    PubMed  CAS  Google Scholar 

  • Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75:3050–3054

    PubMed  CAS  Google Scholar 

  • Gill DM, Pappenheimer AM (1971) Structure-activity relationships in diphtheria toxin. J Biol Chem 246:1492–1495

    PubMed  CAS  Google Scholar 

  • Gill DM, Rappaport SH (1979) Origin of the enzymatically active A fragment of cholera toxin. J Infect Dis 139:674–680

    PubMed  CAS  Google Scholar 

  • Gill DM, Pappenheimer AM, Brown R, Kurnick JT (1969) Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinamide adenine dinucleotide in mammalian cell extracts. J Exp Med 129:1–21

    PubMed  CAS  Google Scholar 

  • Gray GL, Smith DH, Baldrige JS, Harkins RN, Vasil ML, Chen EY, Heyneker HL (1984) Cloning, nucleotide sequence, and expression in Escherichia coli of the exotoxin A structural gene of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 81:2645–2649

    PubMed  CAS  Google Scholar 

  • Greenfield L, Bjorn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci USA 80:6853–6857

    PubMed  CAS  Google Scholar 

  • Habermann B, Mohr C, Just I, Aktories K (1991) ADP-ribosylation and de-ADP-ribosylation of the rho protein by Clostridium botulinum exoenzyme C3. Regulation by EDTA, guanine nucleotides and pH. Biochim Biophys Acta 1077: 253–258

    PubMed  CAS  Google Scholar 

  • Hartwig JH, Kwiatkowski DJ (1991) Actin-binding proteins. Curr Opin Cell Biol 3:87–97

    PubMed  CAS  Google Scholar 

  • Henriksen O, Robinson EA, Maxwell ES (1975) Interaction of guanosine nucleotides with elongation factor 2. J Biol Chem 250:720–724

    PubMed  CAS  Google Scholar 

  • Hescheler, Rosenthal W, Trautwein W, Schultz G (1987) The GTP-binding protein, Go regulates neuronal calcium channels. Nature 325:445–447

    PubMed  CAS  Google Scholar 

  • Hiraoka K, Kaibuchi K, Ando S, Musha T, Takaishi K, Mizuno T, Asada M, Ménard L, Tomhave E, Didsbury J, Snyderman R, Takai Y (1992) Both stimulatory and inhibitory GDP/GTP exchange proteins, smg GDS and rho GDI, are active on multiple small GTP-binding proteins. Biochem Biophys Res Commun 182:921–930

    PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    PubMed  CAS  Google Scholar 

  • Holmes RK, Twiddy EM, Pickett CL (1986) Purification and characterization of type II heat-labile enterotoxin of Escherichia coli. Infect Immun 53:424–433

    Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacryl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555

    PubMed  CAS  Google Scholar 

  • Ibuki F, Moldave K (1968) The effect of guanosine triphosphate, other nucleotides, and aminoacyl transfer ribonucleic acid on the activity of transferase I and its binding to ribosomes. J Biol Chem 243:44–55

    PubMed  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1991) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa Toxin. Proc Natl Acad Sci

    Google Scholar 

  • Iglewski WJ, Fendrick JL (1990) ADP-ribosylation of elongation factor 2 in animal cells. In: Moss J, Vaughan M (eds) ADP-ribosylating Toxins and G Proteins. American Society for Microbiology, Washington, pp 511–524

    Google Scholar 

  • Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyl transferase distinct from toxin A. Proc Natl Acad Sci USA 75:3211–3215

    PubMed  CAS  Google Scholar 

  • Iiri T, Tohkin M, Morishima N, Ohoka Y, Ui M, Katada T (1989) Chemotactic peptide receptor-supported ADP-ribosylation of a pertussis toxin substrate GTP-binding protein by cholera toxin in neutrophil-type HL-60 cells. J Biol Chem 264:21394–21400

    PubMed  CAS  Google Scholar 

  • Inoue S, Sugai M, Murooka Y, Paik S-Y, Hong Y-M, Ohgai H, Suginaka H (1991) Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus. Biochem Biophys Res Commun 174: 459–464

    PubMed  CAS  Google Scholar 

  • Jacquemin C, Thibout H, Lambert B, Correze C (1986) Endogenous ADP-ribosylation of Gs subunit and autonomous regulation of adenylate cyclase. Nature 323:182–184

    PubMed  CAS  Google Scholar 

  • Johnson GL, Kaslow HR, Bourne HR (1978) Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem 253: 7120–7123

    PubMed  CAS  Google Scholar 

  • Jones DT, Masters SB, Bourne HR, Reed RR (1990) Biochemical characterization of three stimulatory GTP-binding proteins: the large and small forms of G and the olfactory-specific G-protein G. J Biol Chem 265:2671–2676

    PubMed  CAS  Google Scholar 

  • Just I, Geipel U, Wegner A, Aktories K (1990) De-ADP-ribosylation of actin by Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin. Eur J Biochem 192:723–727

    PubMed  CAS  Google Scholar 

  • Just I, Mohr C, Schallehn G, Menard L, Didsbury JR, Vandekerckhove J, van Damme J, Aktories K (1992a) Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J Biol Chem 267:10274–10280

    PubMed  CAS  Google Scholar 

  • Just I, Schallehn G, Aktories K (1992b) ADP-ribosylation of small GTP-binding proteins by Bacillus cereus. Biochem Biophys Res Commun 183:931–936

    PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1984a) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259:6228–6234

    PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1984b) ADP-ribosylation of Gs promotes the dissociation of its α and β subunits. J Biol Chem 259:6235–6240

    PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1986) The protein cofactor necessary for ADP-ribosylation of G by cholera toxin is itself a GTP-binding protein. J Biol Chem 261: 7906–7911

    PubMed  CAS  Google Scholar 

  • Kaibuchi K, Mizuno T, Fujioka H, Yamamoto T, Kishi K, Fukumoto Y, Hori Y, Takai Y (1991) Molecular cloning of the cDNA for stimulatory GDP/GTP exchange protein for smg p21s (ras p21-like small GTP-binding proteins) and characterization of stimulatory GDP/GTP exchange protein. Mol Cell Biol 11:2873–2880

    PubMed  CAS  Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T (1991) Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400

    PubMed  CAS  Google Scholar 

  • Kessel M, Klink F (1980) Archebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature 287:250–251

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Yamamoto K, Fujita T, Takai Y (1988) ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1. J Biol Chem 263:16303–16308

    PubMed  CAS  Google Scholar 

  • Klinz F-J, Costa T (1989) Cholera toxin ADP-ribosylates the receptor-coupled form of pertussis toxin-sensitive G-proteins. Biochem Biophys Res Commun 165:554–560

    PubMed  CAS  Google Scholar 

  • Kohno K, Uchida T, Ohkubo H, Nakanishi S, Nakanishi T, Fukui T, Ohtsuka E, Ikehara M, Okada Y (1986) Amino acid sequence of mammalian elongation factor 2 deduced from the cDNA sequence: homology with GTP-binding proteins. Proc Natl Acad Sci USA 83:4978–4982

    PubMed  CAS  Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696

    PubMed  CAS  Google Scholar 

  • Lang P, Guizani L, Vitté-Mony I, Stancou R, Dorseuil O, Gacon G, Bertoglio J (1992) ADP-ribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J Biol Chem 267:11677–11680

    PubMed  CAS  Google Scholar 

  • Lee H, Iglewski WJ (1984) Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc Natl Acad Sci USA 81:2703–2707

    PubMed  CAS  Google Scholar 

  • Leppla SH, Martin OC, Muehl LA (1978) The exotoxin of P. aeruginosa: a proenzyme having an unusual mode of activation. Biochem Biophys Res Commun 81:532–538

    PubMed  CAS  Google Scholar 

  • Lin SY, McKeehan WL, Culp W, Hardesty B (1969) Partial characterization of the enzymatic properties of the aminoacyl transfer ribonucleic acid binding enzyme. J Biol Chem 244:4340–4350

    PubMed  CAS  Google Scholar 

  • Litosch I, Wallis C, Fain JN (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J Biol Chem 260:5464–5471

    PubMed  CAS  Google Scholar 

  • Locht C, Keith JM (1986) Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232:1258–1264

    PubMed  CAS  Google Scholar 

  • Locht C, Capian C, Feron L (1989) Identification of amino acid residues essential for the enzymatic activities of pertussis toxin. Proc Natl Acad Sci USA 86: 3075–3079

    PubMed  CAS  Google Scholar 

  • Ludwig DS, Ribi HO, Schoolnik GK, Kornberg RD (1986) Two-dimensional crystals of cholera toxin B-subunit-receptor complexes: projected structure at 17 A resolution. Proc Natl Acad Sci USA 83:8585–8588

    PubMed  CAS  Google Scholar 

  • Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40

    PubMed  CAS  Google Scholar 

  • Madshus IH, Stenmark H (1992) Entry of ADP-ribosylating toxins into cells. Curr Top Microbiol Immunol 175:2–26

    Google Scholar 

  • Maehama T, Takahashi K, Ohoka Y, Ohtsuka T, Ui M, Katada T (1991) Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins. J Biol Chem 266:10062–10065

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1983) Binding of hormones and neuropeptides by calmodulin. Biochemistry 22:1995–2001

    PubMed  CAS  Google Scholar 

  • Matsuyama S, Tsuyama S (1991) Mono-ADP-ribosylation in brain: purification and characterization of ADP-ribosyltransferases affecting actin from rat brain. J Neurochem 57:1380–1387

    PubMed  CAS  Google Scholar 

  • Mattera R, Yatani A, Kirsch GE, Graf R, Okabe K, Olate J, Codina J, Brown AM, Birnbaumer L (1989) Recombinant ai-3 subunit of G protein activates GK-gated K+ channels. J Biol Chem 264:465–471

    PubMed  CAS  Google Scholar 

  • Mauss S, Chaponnier C, Just I, Aktories K, Gabbiani G (1990) ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur J Biochem 194:237–241

    PubMed  CAS  Google Scholar 

  • Mayer T, Koch R, Fanick W, Hilz H (1988) ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoope-Seyler 369:579–583

    Google Scholar 

  • Mohr C, Koch G, Just I, Aktories K (1992) ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady state GTPase activities of recombinant rhoA and rhoB proteins. FEBS Lett 297:95–99

    PubMed  CAS  Google Scholar 

  • Moldave K (1985) Eukaryotic protein synthesis. Ann Rev Biochem 54:1109–11049

    PubMed  CAS  Google Scholar 

  • Morii N, Kawano K, Sekine A, Yamada T, Narumiya S (1991) Purification of GTPase-activating protein specific for the rho gene. J Biol Chem 266:7646–7650

    PubMed  CAS  Google Scholar 

  • Moss J, Richardson SH (1978) Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. J Clin Invest 62:281–285

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252: 2455–2457

    PubMed  CAS  Google Scholar 

  • Moss J, Garrison SVC, Oppenheimer NJ, Richardson SH (1979a) NAD-dependent ADP-ribosylation of arginine and proteins by Escherichia coli heat-labile enterotoxin. J Biol Chem 254:11993–11996

    PubMed  CAS  Google Scholar 

  • Moss J, Stanley SJ, Lin MC (1979b) NAD glycohydrolase and ADP-ribosyltransferase activities are intrinsic to A peptide of choleragen. J Biol Chem 254:11993–11996

    PubMed  CAS  Google Scholar 

  • Murayama T, Ui M (1984) [3H]GDP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. J Biol Chem 259:761–769

    PubMed  CAS  Google Scholar 

  • Narumiya S, Sekine A, Fujiwara M (1988) Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257

    PubMed  CAS  Google Scholar 

  • Navon SE, Fung BK-K (1984) Characterization of transducin from bovine retinal rod outer segments. J Biol Chem 259:6686–6693

    PubMed  CAS  Google Scholar 

  • Nemoto Y, Namba T, Kozaki S, Narumiya S (1991) Clostridium botulinum C3 ADP-ribosyltransferase gene. J Biol Chem 266:19312–19319

    PubMed  CAS  Google Scholar 

  • Nicosia A, Perugini M, Franzini C, Casagli MC, Borri MG, Antoni G, Almoni M, Neri P, Ratti G, Rappuoli R (1986) Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci USA 83:4631–4635

    PubMed  CAS  Google Scholar 

  • Nilsson L, Nygard O (1988) Structural and functional studies of the interaction of the eukaryotic elongation factor EF-2 with GTP and ribosomes. Eur J Biochem 171:293–299

    PubMed  CAS  Google Scholar 

  • Noda M, Tsai S, Adamik R, Moss J, Vaughan M (1990) Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta 1034:195–199

    PubMed  CAS  Google Scholar 

  • Northup JK, Sternweis PC, Smigel MDC, Ross EM, Gilman AG (1980) Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 77:6516–6520

    PubMed  CAS  Google Scholar 

  • Nygard O, Nilsson L (1984) Nucleotide-mediated interactions of eukaryotic elongation factor EF-2 with ribosomes. Eur J Biochem 140:93–96

    PubMed  CAS  Google Scholar 

  • Nygard O, Nilsson L (1985) Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes. Biochim Biophys Acta 824: 152–162

    PubMed  CAS  Google Scholar 

  • Ohishi I (1987) Activation of botulinum C2 toxin by trypsin. Infect Immun 55:1461–1465

    PubMed  CAS  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Nagata K, Iiri T, Nozawa Y, Ueno K, Ui M, Katada T (1989) Activator protein supporting the botulinum ADP-ribosyltransferase reaction. J Biol Chem 264:15000–15005

    PubMed  CAS  Google Scholar 

  • Omura F, Kohno K, Uchida T (1989) The histidine residue of codon 715 is essential for function of elongation factor 2. Eur J Biochem 180:1–8

    PubMed  CAS  Google Scholar 

  • Owens JR, Frame LT, Ui M, Cooper DMF (1985) Cholera toxin ADP-ribosylates the islet-activating protein substrate in adipocyte membranes and alters its function. J Biol Chem 260:15946–15952

    PubMed  CAS  Google Scholar 

  • Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214

    PubMed  CAS  Google Scholar 

  • Papini E, Schiavo G, Sandona D, Rappuoli R, Montecucco C (1989) Histidine 21 is at the NAD+ binding site of diphtheria toxin. J Biol Chem 264:12385–12388

    PubMed  CAS  Google Scholar 

  • Papini E, Santucci A, Schiavo G, Domenighini M, Neri P, Rappuoli R, Montecucco C (1991) Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin. J Biol Chem 266:2494–2498

    PubMed  CAS  Google Scholar 

  • Pastan I, FitzGerald D (1989) Pseudomonas exotoxin: chimeric toxins. J Biol Chem 264:15157–15160

    PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21 induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    PubMed  CAS  Google Scholar 

  • Perentesis JP, Miller SP, Bodley JW (1992) Protein toxin inhibitors of protein synthesis. Biofactors 3:173–184

    PubMed  CAS  Google Scholar 

  • Pickett CL, Weinstein DL, Holmes RK (1987) Genetics of type lla heat-labile enterotoxin of Escherichia coli: operon fusions, nucleotide sequence and hybridization studies. J Bacteriol 169:5180–5187

    PubMed  CAS  Google Scholar 

  • Polakis PG, Weber RF, Nevins B, Didsbury JR, Evans T, Snyderman R (1989) Identification of the ral and rac1 gene products, low molecular mass GTP-binding proteins from human platelets. J Biol Chem 264:16383–16389

    PubMed  CAS  Google Scholar 

  • Pollard TD, Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55:987–1035

    PubMed  CAS  Google Scholar 

  • Popoff MR, Rubin EJ, Gill DM, Boquet P (1988) Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun 56:2299–2306

    PubMed  CAS  Google Scholar 

  • Popoff MR, Milward FW, Bancillon B, Boquet P (1989) Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp2 cells. Infect Immun 57:2462–2469

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium butulinum C and D phages. Nucleic Acids Res 18:1291

    PubMed  CAS  Google Scholar 

  • Popoff MR, Hauser D, Boquet P, Eklund MW, Gill DM (1991) Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. Infect Immun 59:3673–3679

    PubMed  CAS  Google Scholar 

  • Raeburn S, Goor R, Schneider JA, Maxwell ES (1968) Interaction of aminoacyl transferase II and guanosine triphosphate: inhibition by diphtheria toxin and nicotinamide adenine dinucleotide. Proc Natl Acad Sci USA 61:1428–1434

    PubMed  CAS  Google Scholar 

  • Rappuoli R, Pizza M (1991) Structure and evolutionary aspects of ADP-ribosylating toxins. In: Alouf JE, Freer JH (eds) Sourcebook of bacterial protein toxins. Academic, London, pp 1–21

    Google Scholar 

  • Ribi HO, Ludwig DS, Mercer KL, Schoolnik GK, Kornberg RD (1988) Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science 239:1272–1276

    PubMed  CAS  Google Scholar 

  • Ross EM, Gilman AG (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem 49:533–564

    PubMed  CAS  Google Scholar 

  • Rösener S, Chhatwal GS, Aktories K (1987) Botulinum ADP-ribosyltransferase C3 but not botulinum neurotoxins C1 and D ADP-ribosylates low molecular mass GTP-binding proteins. FEBS Lett 224:38–42

    PubMed  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-Kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosyl-ation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Selve N, Wegner A (1986) Rate of treadmilling of actin filaments in vitro. J Mol Biol 187:627–631

    PubMed  CAS  Google Scholar 

  • Serventi IM, Moss J, Vaughan M (1992) Enhancement of cholera toxin-catalyzed ADP-ribosylation by guanine nucleotide-binding proteins. Curr Top Microbiol Immun 175:43–68

    CAS  Google Scholar 

  • Shinjo K, Koland JG, Hart MJ, Narasimhan V, Johnson DI, Evans T, Cerione RA (1990) Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci USA 87:9853–9857

    PubMed  CAS  Google Scholar 

  • Simon M, Strathmann M, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    PubMed  CAS  Google Scholar 

  • Simpson LL (1989) The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects. J Pharmacol Exp Ther 251:1223–1228

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zapeda HH, Wilkins TD (1987) Molecular basis for the pathological actions of Clostridium perfringens lota toxin. Infect Immun 55: 118–122

    PubMed  CAS  Google Scholar 

  • Simpson LL, Stiles BG, Zepeda H, Wilkins TD (1989) Production by Clostridium spiroforme of an iotalike toxin that possesses mono(ADP-ribosyl)transferase activity: Identification of a novel class of ADP-ribosyltransferases. Infect Immun 57:255–261

    PubMed  CAS  Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BAM, Witholt B, Hol WGJ (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351:371–377

    PubMed  CAS  Google Scholar 

  • Stasia M-J, Jouan A, Bourmeyster N, Boquet P, Vignais PV (1991) ADP-ribosylation of a small size GTP-binding protein in bovine neutrophils by the C3 exoenzyme of Clostridium botulinum and effect on the cell motility. Biochem Biophys Res Commun 180:615–622

    PubMed  CAS  Google Scholar 

  • Sugai M, Enomoto T, Hashimoto K, Matsumoto K, Matsuo Y, Ohgai H, Hong Y-M, Inoue S, Yoshikawa K, Suginaka H (1990) A novel epidermal cell differentiation inhibitor (EDIN): purification and characterization from Staphylococcus aureus. Biochem Biophys Res Commun 173:92–98

    PubMed  CAS  Google Scholar 

  • Sugai M, Hashimoto K, Kikuchi A, Inoue S, Okumura H, Matsumota K, Goto Y, Ohgai H, Moriishi K, Syuto B, Yoshikawa K, Suginaka H, Takai Y (1992) Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J Biol Chem 267:2600–2604

    PubMed  CAS  Google Scholar 

  • Tang W-L, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503

    PubMed  CAS  Google Scholar 

  • Tanuma S, Kawashima K, Endo N (1988) Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 263: 5485–5489

    PubMed  CAS  Google Scholar 

  • Terashima M, Mishima K, Yamada K, Tsuchiya M, Wakutani T, Shimoyama M (1992) ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur J Biochem 204:305–311

    PubMed  CAS  Google Scholar 

  • Tsai SC, Noda M, Adamik R, Chang PP, Chen HC, Moss J, Vaughan M (1988) Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J Biol Chem 263:1768–1772

    PubMed  CAS  Google Scholar 

  • Tsuji T, Inoue T, Miyama A, Noda M (1991) Glutamic acid-112 of the A subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli is important for ADP-ribosyltransferase activity. FEBS Lett 291 2:319–321

    PubMed  CAS  Google Scholar 

  • Ueda T, Kikuchi A, Ohga N, Yamamoto J, Takai Y (1990) Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem 265:9373–9380

    PubMed  CAS  Google Scholar 

  • Ui M (1990) Pertussis toxin as a valuable probe for G-protein involvement in signal transduction. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 45–77

    Google Scholar 

  • Van Dop C, Tsubokawa M, Bourne HR, Ramachandran J (1984) Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259:696–698

    PubMed  Google Scholar 

  • van Heyningen WE, Carpenter CCJ, Pierce NF, Greenough WB (1971) Deactivation of cholera toxin by ganglioside. J Infect Dis 124:415–418

    PubMed  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980a) ADP-ribosylation of elongation factor 2 by diphtheria toxin. J Biol Chem 255:10717–10720

    PubMed  Google Scholar 

  • Van Ness BG, Howard JB, Bodley JW (1980b) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyldiphthamide and its hydrolysis products. J Biol Chem 255:10710–10716

    PubMed  Google Scholar 

  • Vandekerckhove J (1990) Actin-binding proteins. Curr Opin Cell Biol 2:41–50

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14:123–133

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/v-actin in arginine 177. J Biol Chem 263:696–700

    PubMed  CAS  Google Scholar 

  • Wegner A (1976) Head tail polymerization of actin. J Mol Biol 108:139–150

    PubMed  CAS  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    PubMed  CAS  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    PubMed  CAS  Google Scholar 

  • West RE, Moss J, Vaughan M, Liu T, Liu T-Y (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260:14428–14430

    PubMed  CAS  Google Scholar 

  • Wick MJ, Iglewski BH (1990) Pseudomonas aeruginosa Exotoxin A. In: Moss J, Vaughan M (eds) ADP-ribosylating toxins and G proteins. American Society for Microbiology, Washington, pp 31–43

    Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    PubMed  CAS  Google Scholar 

  • Wieland T, Ulibarri I, Aktories K, Gierschik P, Jakobs KH (1990a) Interaction of small G proteins with photoexcited rhodopsin. FEBS Lett 263:195–198

    PubMed  CAS  Google Scholar 

  • Wieland T, Ulibarri I, Gierschik P, Hall A, Aktories K, Jakobs KH (1990b) Interaction of recombinant rho A GTP-binding proteins with photoexcited rhodopsin. FEBS Lett 274:111–114

    PubMed  CAS  Google Scholar 

  • Wille M, Just I, Wegner A, Aktories K (1992) ADP-ribosylation of the gelsolin-actin complex by clostridial toxins. J Biol Chem 267:50–55

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Nakazawa T, Miyata T, Kaji A, Yokota T (1984) Evolution and structure of two ADP-ribosylation enterotoxins: Escherichia coli heat-labile toxin and cholera toxin. FEBS Lett 169:241–246

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Gojobori T, Yokota T (1987) Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae O1. J Bacteriol 169:1352–1357

    PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235:207–211

    PubMed  CAS  Google Scholar 

  • Yatani A, Imoto Y, Codina J, Hamilton SL, Brown AM, Birnbaumer L (1988) The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridinesensitive Ca2+ channels. J Biol Chem 263:9887–9895

    PubMed  CAS  Google Scholar 

  • Yeramian P, Chardin P, Madaule P, Tavitian A (1987) Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res 15:1869

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aktories, K., Just, I. (1993). GTPases and Actin as Targets for Bacterial Toxins. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology I. Handbook of Experimental Pharmacology, vol 108 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78267-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78267-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78269-5

  • Online ISBN: 978-3-642-78267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics