Skip to main content

Literatur

  • Chapter
BIOFIX

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alexander H, Corcoran S, Parsons JR, Weiss AB (1981) Internal fracture fixation with partially degradable plates. Bioengineering 9th Conference Elmsford, New York, pp 115–118

    Google Scholar 

  2. Alexander H, Langrana N, Massengill JB, Weiss AB (1981) Development of new methods for phalangeal fracture fixation. J Biomechanics 14: 377–378

    Article  CAS  Google Scholar 

  3. Barbosa MA (1991) Corrosion mechanisms of metallic biomaterials. In: Barbosa MA (ed.): Biomaterials Degradation, Elsevier Science Publisher, Amsterdam, pp. 227–257.

    Google Scholar 

  4. Barrows TH, Johnson JD, Gibson SJ, Grussing DM (1986) The design and synthesis of bioresorbable polyester-amides. Clin Mater 1: 233–257

    Article  Google Scholar 

  5. Becker D (1988) Erhaltungsoperation bei Radiusköpfchenfraktur mittels Pinnung mit dem resorbierbaren Material Biofix. Handchirurgie 20: 157–159

    CAS  Google Scholar 

  6. Becker HP, Gerngroß H: Fixation of cortico-caneellous bone grafts with SR-PGA screws. In: Törmälä P (ed) Self-reinforced biodegradable polymeric composites in surgery. CRC press, Boca Raton (in press)

    Google Scholar 

  7. Becker HP, Steinmann R, Evers B, Gerngroß H: Osteosynthesen mit re-sorbierbaren Materialien in der Extremitätenchirurgie - Spannungsfeld zwischen Wunschtraum und gesicherter Indikation. Wehrmed Mschr (im Druck)

    Google Scholar 

  8. Bischoff CA, Waiden P(1893) In: Liebigs Annalen der Chemie 1979: 46–48 zitiert bei Higgins NA (1954) U.S. Patent, 2 676 945

    Google Scholar 

  9. Blauth, W, Schuchardt E (eds) (1986) Orthopädisch-chirurgische Operationen am Knie. Thieme, Stuttgart New York

    Google Scholar 

  10. Böhringer Ingelheim KG (1986) Basisdaten und Eigenschaften resorbier-barer Polyester.

    Google Scholar 

  11. Böstman O, Vainionpää S, Hirvensalo E et al. (1987) Biodegradable internal fixation for malleollar fractures. J Bone Joint Surg [Br] 69: 615–619

    Google Scholar 

  12. Böstman O, Hirvensalo E, Mäkinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg [Br] 72: 592–596

    Google Scholar 

  13. Böstman O (1991) Osteolytic changes accompanying degradation of ab-sorbable fracture implants. J Bone Joint Surg [Br] 73: 679–682

    Google Scholar 

  14. Böstman O, Hirvensalo E, Partio E, Törmälä P, Rokkanen P (1992) Resorbierbare Stäbchen und Schrauben aus Polyglykolid bei der Stabilisie-rung von Malleolarfrakturen. Unfallchirurg 95: 109–112

    PubMed  Google Scholar 

  15. Carothers W (1932) zitiert bei Higgins NA (1954) U.S. Patent, 2 676 945

    Google Scholar 

  16. Christel P, Chabot F, Leray JC, Morin C, Vert M (1982) Biodegradable composites for internal fixation. In: Winter GD, Gibbon DF, Plenk H (eds) Biomaterials 1980. Wiley, New York, p 271

    Google Scholar 

  17. Claes L, Burri C, Kiefer H, Mutschier W (1986) Resorbable pins for the refixation of osteochondral fragments. In: Christel P, Meunier A, Lee ACJ (eds) Biodegradable and biomechanical performance of biomaterials. Elsevier Science Publisher, Amsterdam, pp 257–262.

    Google Scholar 

  18. Claes L, Burri C, Kiefer H, Mutschier W (1986) Resorbierbare Implantate zur Refixierung von osteochondralen Fragmenten in Gelenkflächen. Akt Traumatol 16: 74–77

    CAS  Google Scholar 

  19. Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29: 393–397

    PubMed  CAS  Google Scholar 

  20. Cutright DE, Hunsuck EE (1972) The repair of the orbital floor using biodegradable polylactic acid. Oral Surg 33: 28–34

    Article  PubMed  CAS  Google Scholar 

  21. Cutright DE, Perez B, Beasley JD Larson WJ, Posey WR (1974) Degradation rates of polymers and copolymers of polylactic and polyglycolic acids. Oral Surg 37: 142–147

    Google Scholar 

  22. Dijkema ARA, Van Der Eist M, Breederfeld RS, Verspui G, Patka P, Haarman HJTM (1993) Surgical treatment of fracture dislocations of the ankle joint with biodegradable implants: a randomized study. J Trauma 34: 82–84

    Article  PubMed  CAS  Google Scholar 

  23. Dociu N, Hein P (1981) PDS, ein neues chirurgisches Nahtmaterial. Ethicon OP-Forum 108: 4

    Google Scholar 

  24. Eitenmüller J, Gerlach KL, Schmickal T, Muhr G (1987) Semirigide Plattenosteosynthesen unter Verwendung absorbierbarer Polymere als temporäre Implantate. I. Einführung, chemische Zusammensetzung und materialkundliche Untersuchungen. Chirurg 58: 759–763

    Google Scholar 

  25. Eitenmüller J, Gerlach KL, Schmickal T, Muhr G (1987) Semirigide Plattenosteosynthesen unter Verwendung absorbierbarer Polymere als temporäre Implantate. II. Tierexperimentelle Untersuchungen. Chirurg 58: 831–839

    Google Scholar 

  26. Eitenmüller J, Gerlach KL, Schmickal T, Krause G (1987) Erste tierex-perimentelle Erfahrungen bei der Verwendung von Platten und Schrauben aus vollständig resorbierbarem Polylactid zur Stabilisierung des osteoto- mierten Radius am Beagle. Hefte Unfallheilk 181: 303–308

    Google Scholar 

  27. Eitenmüller J, Entenmann H, Muhr G (1988) Treatment of ankle fractures with complete biodegradable plates and screws of molecular weight po- lylactide. Transactions 3rd World Biomaterials Congress, Kyoto, p 195.

    Google Scholar 

  28. Frazza EJ, Schmitt EE (1971) A new absorbable suture. J Biomed Mater Res Symp 1: 43–58

    Article  Google Scholar 

  29. Friden T, Rydholm U (1992) Severe aseptic synovitis of the knee after biodegradable internal fixation. A case report. Acta Orthop Scand 63: 94–97.

    Google Scholar 

  30. Galante JO, Lemons J, Spector M, Wilson PD jr, Wright TM (1991) The biologic effect of implant materials. J Orthop Res 9: 760–775

    Google Scholar 

  31. Gerlach KL (1986) Tierexperimentelle Untersuchungen zur Anwendung biologisch abbaubarer Polymere in der Mund-Kiefer-Gesichtschirurgie. Habil Schrift, Universität Köln

    Google Scholar 

  32. Gerngroß H, Becker HP (1993) Bioresorbierbare Schrauben: Möglich-keiten und Grenzen bioresorbierbarer Osteosynthesen. In: Gahr R.H. (Hrsg.): Entwicklungen in der Unfallchirurgie. Rückblick - Ausblick. Springer, Berlin Heidelberg New York

    Google Scholar 

  33. Getter L, Cutright DE, Baskar SN, Augsburg JK (1972) Biodegradable intraosseus appliance in the treatment of mandibular fractures. J Oral Surg 30: 344–348

    PubMed  CAS  Google Scholar 

  34. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery - polyglycolic/poly(lacticacid) homo- and copolymers. Polymer 20: 1459–1464

    Article  CAS  Google Scholar 

  35. Glatzmaier J (1989) Vergleichende Untersuchungen verschiedener resor-bierbarer Implantatmaterialien. Med. Dissertation, Universität Ulm

    Google Scholar 

  36. Greve H, Holste J (1986) Relaxation osteochondraler Fragmente durch resorbierbare Kunststoff stifte. Akt Traumatol 15: 145–149

    Google Scholar 

  37. Higgins NA (1954) Condensation polymers of hydroxyacetic acid. U.S. Patent, 2 676 945

    Google Scholar 

  38. Hoffmann R, Krettek C, Haas N, Tscherne H (1989) Die distale Radi-usfraktur. Frakturstabilisierung mit biodegradäblen Osteosynthesestiften ( Biofix ). Unfallchirurg 92: 430–434

    Google Scholar 

  39. Hoffmann R, Krettek C, Hetkämper A, Haas N, Tscherne H (1992) Osteosynthese distaler Radiusfrakturen mit biodegradablen Frakturstiften - Zweijahresergebnisse. Unfallchirurg 95: 99–105

    PubMed  CAS  Google Scholar 

  40. Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable polymer of polylactid (PLA) and polyglykolide (PGA) J Biomed Mater Res 17: 71–82

    CAS  Google Scholar 

  41. Hope PG, Williamson DM, Coates CJ, Cole WG (1991) Biodegradable pin fixation of elbow fractures in children. J Bone Joint Surg [Br] 73: 965–968

    CAS  Google Scholar 

  42. Jahn R, Diederichs D, Friedrich B (1989) Resorbierbare Implantate und ihre Anwendung am Beispiel der Radisuköpfchenfraktur. Aktuel Traumatol 19: 281–286

    PubMed  CAS  Google Scholar 

  43. Kelley BS, Dunn RL, Jackson TE, Potter AG, Ellis DN (1988) Transactions of 3rd World Biomaterials Congress, Kyoto, p 471

    Google Scholar 

  44. Kronenthal RL (1975) Biodgradable polymers in medicine and surgery. Polym Sci Technol 8: 119–137

    CAS  Google Scholar 

  45. Kulkarni RK, Moore EG, Hegyeli HF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5: 169–181

    Article  PubMed  CAS  Google Scholar 

  46. Leixnering M, Hintringer W, Poigenfürst J (1989) Operationstechnik und Ergebnisse bei der Stabilisierung von Knöchelfrakturen mit dem resor-bierbaren Material Biofic C. Hefte Unfallheilk 207: 329–333

    Google Scholar 

  47. Leixnering M, Moser KL, Poigenfürst J (1989) Die Verwendung von Biofix C zur Stabilisierung von Innenknöchelfrakturen. Akt Traumatol 19: 113–115

    CAS  Google Scholar 

  48. Lowe CE (1954) Preparation of high molecular weight polyhydroxy-acetic ester. U.S. Patent, 2 668 162

    Google Scholar 

  49. Majola A, Vainionpää S, Vihtonen K, Matti M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop 268: 260–269

    PubMed  Google Scholar 

  50. Mäkelä EA, Bötman O, Kekomäki M, Södergärd J, Vainio V, Törmälä P, Rokkanen P (1992) Biodegradable fixation of distal humeral physeal fractures. Clin Orthop 283: 237–243

    PubMed  Google Scholar 

  51. Matlaga BF, Salthouse TN (1983) Ultrastructural observations of cells at the interface of a biodegradable polymer: polyglactin 910. J Biomed Mater Res 17: 185–197

    Article  PubMed  CAS  Google Scholar 

  52. Miller RA, Brady JM, Cutright DE (1977) Degradation rate of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PGASS/PLA copolpolymer ratios. J Biomed Mater Res 11: 711–719

    Google Scholar 

  53. Moiseev YV, Daurova TT, Voronkava O (1979) The specifity of polymer degradation in the living body. J Polym Sci 66: 269 - 276

    CAS  Google Scholar 

  54. Müller ME, Allgöwer M, Schneider R, Willenegger H (Hrsg) (1991) Manual of internal fixation: techniques, recommended by the AO-ASIF Group. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  55. Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparisons of biodegradable substances as osteogenic agents. Oral Surg 43: 836–843

    Article  CAS  Google Scholar 

  56. Nockemann PF (1992) Die chirurgische Naht. 4. Aufl. Thieme, Stuttgart New York

    Google Scholar 

  57. Päivärinta U, Böstman O, Majola A, Toivonen T, Törmälä P, Rokkanen P (1993) Intraosseous cellular response to biodegradable fracture fixation screws made of polyglycolide or polylactide. Arch Orthop Trauma Surg 112: 71–74

    Article  PubMed  Google Scholar 

  58. Parsons JR, Alexander H, Corcoran SF, Weiss AB (1979) Development of variable stiffness, absorbable bone plate. 25th Annual ORS, San Fran-cisco USA, p 168

    Google Scholar 

  59. Parsons JR (1985) Resorbable materials and composites; new concepts in orthopedic biomaterials. Orthopedics 8: 908–915

    Google Scholar 

  60. Partio EK, Hirvensalo E, Partio E et al (1992) Talocrural arthrodesis with absorbable screws. Acta Orthop Scand 63: 170–172

    Article  PubMed  CAS  Google Scholar 

  61. Partio, E Die Frühmobilisierung im Vergleich zur Immobilisierung bei mit absorbierbaren Schrauben versorgten Malleolarfrakturen. Urifallchirurg (im Druck)

    Google Scholar 

  62. Pihlajamäki H, Böstman O, Hirvensalo E, Törmälä P, Rokkanen P (1992) Absorbable pins of self-reinforced poly-l-lactic acid for fixation of fractures and osteotomies. J Bone Joint Surg [Br] 74: 853–857

    Google Scholar 

  63. Poigenfürst J, Leixnering M, Ben Mokhtar M (1990) Lokalkomplikationen nach Implantationen von Biorod. Akt Traumatol 20: 157–159

    Google Scholar 

  64. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery - poly(glycloic acid)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer 22: 494–498

    Google Scholar 

  65. Rodegra H (1982) Zur Geschichte der Wundversorgung. Arzt Krankenhaus 4: 152–158

    Google Scholar 

  66. Rokkanen P, Böstman O, Vainionpää S et al. (1985) Biodegradable implants in fracture fixation: early results in treatment of fractures of the ankle. Lancet: 1422–1424

    Google Scholar 

  67. Rosson J, Egan J, Shearer, J, Monro, P (1991) Bone weakness after the removal of plates and screws. Cortical atrophy or screw holes? J Bone Joint Surg [Br] 73: 283–286

    CAS  Google Scholar 

  68. Rosson J, Petley GW, Shearer JR: (1991) Bone structure after removal of internal fixation plates. J Bone Joint Surg [Br] 73: 65–67

    CAS  Google Scholar 

  69. Ruf W, Schult W, Buhl K (1990) Die Stabilisierung von Malleolarfrakturen und Flakeverletzungen mit resorbierbaren Polyglykolid-Stiften-Biofix. Unfallchirurg 16: 202–209

    Article  CAS  Google Scholar 

  70. Salthouse TN, Matlaga BJ, Oleary RK (1986) Microspectrophotometry of macrophage lysosomal enzyme activity. Clin Mater 1: 233–257

    Article  Google Scholar 

  71. Schmitt EE, Polistina RA (1969) Polyglycolic acid prosthetic devices. U.S. Patent 3 463 158

    Google Scholar 

  72. Schneider AK (1955) Polymers of high melting lactide. U.S. Patent 2 703 316

    Google Scholar 

  73. Steinmann R, Gerngroß H, Härtel W (1990) Die Verwendung bioresor- bierbarer Implantate ( Biofix) in der Chirurgie. Akt Traumatol 20: 102–107

    Google Scholar 

  74. Thiede A, Jostarndt L, Lünstedt B, Sonntag HG (1980) Kontrollierte, experimentelle histologische und mikrobiologische Untersuchungen zur Hemmwirkung von Polyglykolsäurefäden bei Infektionen. Chirurg 51: 35–38

    PubMed  CAS  Google Scholar 

  75. Törmälä P, Vainionpää S, Kilpikari J, Rokkanen P (1987) The effects of fiber reinforcement and gold plating on the flexural and tensile strength of PGA/PLA cpopolymer materials in vitro. Biomaterials 8: 42–45

    Article  PubMed  Google Scholar 

  76. Törmälä P, Vasenius J, Vainionpää S, Laiho J, Pohjonen T, Rokkanen P (1991) Ultra-high-strength absorbable self-reinforced polyglycolide (SR- PGA) composite rods for internal fixation of bone fractures: In vitro and in vivo study. J Biomed Mater Res 25: 1–25

    Google Scholar 

  77. Törmälä P (1992) Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater 10: 29–34

    Article  PubMed  Google Scholar 

  78. Törmälä P, Pohjonen T, Helevirta P et al. (1992) Manufacturing, structure and properties of ultra-high strength biodegradable polymeric composites. In: Migilaresi C, Kardos JL (eds): Biomedical applications of composites, CRC Press, Boca Raton

    Google Scholar 

  79. Tunc DL, Lehmann WB, Stomwater A, Kummer F (1985) Evaluation of high molecular weight polylactide osteosynthesis device. Transactions 11th Ann Meeting of the Society of Biomaterials VIE, p 8

    Google Scholar 

  80. Uthoff HK (1980) Current concepts of internal fixation of fractures. Springer, Berlin Heidelberg New York

    Google Scholar 

  81. Vainionpää S (1986) Biodegradation of polyglycolic acid in bone tissue: an experimental study on rabbits. Arch Orthop Trauma Surg 104: 333–338

    Article  PubMed  Google Scholar 

  82. Vainionpää S, Vihtonen K, Mero M, et al. (1986) Fixation of experimental osteotomies of the distal femur of rabbits with biodegradable material. Arch Orthop Trauma Surg 106: 1–4

    Article  PubMed  Google Scholar 

  83. Vainionpää S, Kilpikari J, Laiho J, Helevirta P, Rokkanen P, Törmälä P (1987) Strength and strength retention in vitro, of absorbable, selfrein- forced polyglycolide ( PGA) rods for fracture fixation. Biomaterials 8: 46–48

    Google Scholar 

  84. Vainionpää S, Rokkanen P, Törmälä P (1989) Surgical applications of biodegradable polymers in human tissues. Progr Polym Sci 14: 679–716

    Article  Google Scholar 

  85. van Randenborgh J (1983) Biodegenerable Implantate rjm Knochen. Med. Dissertation, Universität Würzburg

    Google Scholar 

  86. Vasenius J, Vainionpää, Vihtonen K, Mero M, Mäkelä A, Törmälä P, Rokkanen P (1990) A histomorphological study on self-reinforced poly-glycolide ( SR-PGA) osteosynthesis implants coated with slowly absorbable polymers. J Biomed Mater Res 24: 1615–1635

    Google Scholar 

  87. Vert M, Chabot F, Leray J, Christel P (1981) Stereo-regular bioabsorbable polyester for orthopedic surgery. Makromol Chem Suppl 5: 30–41

    Article  CAS  Google Scholar 

  88. Vert M, Christel P, Chabot F, Leray J (1984) Bioresorbable plastic material for bone surgery. In: Hastings D, Ducheyne P (eds.) Macromolecular biomaterials. CRC Press, Boca Raton, p 119

    Google Scholar 

  89. Wilhams DF, Mort E (1977) Enzyme accelerated hydrolysis of polygly-colic acid. J Bioengin 1: 231–238

    Google Scholar 

  90. Williams DF (1979) Some observations on the role of cellular enzymes in the in-vivo degradation of polymers. Spech Tech Publ 684: 61–75

    Google Scholar 

  91. Williams DF (1982) Review. Biodegradation of surgical polymers. J Mater Sci 17: 1233–1246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerngroß, H., Becker, H.P. (1994). Literatur. In: BIOFIX. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78797-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78797-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57665-5

  • Online ISBN: 978-3-642-78797-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics