Skip to main content

Regulation of HIV-1 Gene Expression by the Transactivator Protein Tat

  • Chapter
Transacting Functions of Human Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 193))

Abstract

The regulation of HIV-1 gene expression is an area of intense investigation. Like all retroviruses, HIV-1 integrates into cellular DNA, and its gene expression is dependent on host cell transcription factors and polymerases (Gaynor 1992). Cellular transcription factors are able to interact with distinct regulatory regions in the long terminal repeat to modulate gene expression (Gaynor 1992). In addition, viral-encoded proteins are critical to the control of HIV-1 gene expression. A number of important questions exist concerning the mechanisms which regulate HIV-1 gene expression. What cellular factors are responsible for increases in HIV-1 gene expression in response to T-lymphocyte activation? What are the mechanisms that repress HIV-1 gene expression in quiescent cells? How do HIV-1 transactivator proteins stimulate increases in gene expression? An understanding of these questions is critical to determining the interplay between viral and cellular factors which regulate HIV-1 gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldovini A, Debouck C, Feinberg MB, Rosenberg M, Arya SK, Wong SF (1986) Synthesis of the complete frans-activation gene product of human T-lymphotropic virus type III in Escherichia coli: demonstration of immunogenicity in vivo and expression in vitro. Proc Natl Acad Sci USA 83: 6672–6676

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Derse D, Peterlin BM (1992) Human chromosome 12 is required for optimal interactions between tat and TAR of human immunodeficiency virus type 1 in rodent cells. J Virol 66: 4617–4621

    PubMed  CAS  Google Scholar 

  • Arya SK, Gallo RC, Hahn BH, Shaw GM, Popovic M, Salahuddin SZ, Wong SF (1984) Homology of genome of AIDS-associated virus with genomes of human T-cell leukemia viruses. Science 225: 927–930

    Article  PubMed  CAS  Google Scholar 

  • Bagasra O, Khalili K, Seshamma T, Taylor JP, Pomerantz RJ (1992) TAR-independent replication of human immunodeficiency virus type 1 in glial cells. J Virol 66: 7522–7528

    PubMed  CAS  Google Scholar 

  • Barre SF, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler BC, Vezinet BF, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871

    Article  Google Scholar 

  • Benko DM, Schwartz S, Pavlakis GN, Felber BK (1990) A novel human immunodeficiency virus type 1 protein, tev, shares sequences with tat, env, and rev proteins. J Virol 64: 2505–2518

    PubMed  CAS  Google Scholar 

  • Berkhout B, Jeang KT (1989) trans-Activation of human immunodeficiency virus type 1 is sequence specific for both the single-strandad bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J Virol 63: 5501–5504

    PubMed  CAS  Google Scholar 

  • Berkhout B, Jeang KT (1992) Functional roles for the TATA promoter and enhancers in basal and tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol 66: 139–149

    PubMed  CAS  Google Scholar 

  • Berkhout B, Silverman RH, Jeang KT (1989) Tat Trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Gatignol A, Rabson AB, Jeang KT (1990) TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell 62: 757–767

    Article  PubMed  CAS  Google Scholar 

  • Braddock M, Chambers A, Wilson W, Esnouf MP, Adams SE, Kingsman AJ, Kingsman SM (1989) HIV-1 TAT “activates” presynthesized RNA in the nucleus. Cell 58: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Brake DA, Debouck C, Biesecker G (1990) Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 111: 1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Buonaguro L, Barillari G, Chang HK, Bohan CA, Kao V, Morgan R, Gallo RC, Ensoli B (1992) Effects of the human immunodeficiency virus type 1 tat protein on the expression of inflammatory cytokines. J Virol 66: 7159–7167

    PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Guarente L, Sharp PA (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Calnan BJ, Biancalana S, Hudson D, Frankel AD (1991a) Analysis of arginine-rich peptides from the HIV tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991b) Arginine-mediated RNA recognition: the arginine fork. Science 252: 1167–1171

    Article  CAS  Google Scholar 

  • Cordingley MG, LaFemina RL, Callahan PL, Condra JH, Sardana VV, Graham DJ, Nguyen TM, LeGrow K, Gotlib L, Schlabach AJ et al (1990) Sequence-specific interaction of tat protein and tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci USA 87: 8985–8989

    Article  PubMed  CAS  Google Scholar 

  • Crabtree GR (1989) Contingent genetic regulatory events in T-lymphocyte activation. Science 243: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Cullen BR (1986) trans-Activation of human immunodificiency virus occurs via a bimodal mechanism. Cell 46: 973–982

    Article  PubMed  CAS  Google Scholar 

  • Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The trans-activator gene of the human T-cell lymphotropic virus type II-is required for replication. Cell 44: 941–947

    Article  PubMed  CAS  Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA, Valerio R (1989) Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc Natl Acad Sci USA 86: 6925–6929

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Kam J, Lowe AD, Singh M, Skinner MA (1990) HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J 9: 4145–4153

    PubMed  CAS  Google Scholar 

  • Du H, Roy AL, Roeder RG (1993) Human Transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML, promoters. EMBO J 12: 501–511

    PubMed  CAS  Google Scholar 

  • Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong SF (1990) tat Protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345: 84–86

    Article  PubMed  CAS  Google Scholar 

  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong SF (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46: 807–817

    Article  PubMed  CAS  Google Scholar 

  • Feinberg MB, Baltimore D, Frankel AD (1991) The role of tat in the human immunodeficency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA 88: 4045–4049

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Holland EC (1988) HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC et al (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Bredt DS, Pabo CO (1988) tat Protein from human immunodeficiency virus forms a metallinked dimer. Science 240: 70–73

    Article  PubMed  CAS  Google Scholar 

  • Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B et al (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Garcia JA, Wu FK, Mitsuyasu R, Gaynor RB (1987) Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J 6: 3761–3770

    PubMed  CAS  Google Scholar 

  • Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB. (1988) Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 7: 3143–3147

    PubMed  CAS  Google Scholar 

  • Garcia JA, Harrich D, Soultanakis E, Wu F, Mitsuyasu R, Gaynor RB (1989) Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. EMBO J 8: 765–778

    PubMed  CAS  Google Scholar 

  • Gatignol A, Buckler WA, Berkhout B, Jeang KT (1991) Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251: 1597–1600

    Article  PubMed  CAS  Google Scholar 

  • Gaynor R. (1992) Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 6: 347–363

    Article  PubMed  CAS  Google Scholar 

  • Gaynor R, Soultanakis E, Kuwabara M, Garcia J, Sigman DS (1989) Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region. Proc Natl Acad Sci USA 86: 4858–4862

    Article  PubMed  CAS  Google Scholar 

  • Gentz R, Chen CH, Rosen CA (1989) Bioassay for trans-activation using purified human immunodeficiency virus tat-encoded protein: trans-activation requires mRNA synthesis. Proc Natl Acad Sci USA 86: 821–824

    Article  PubMed  CAS  Google Scholar 

  • Harrich D, Garcia J, Wu F, Mitsuyasu R, Gonazalez J, Gaynor R (1989) Role of SP1-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J Virol 63: 2585–2591

    PubMed  CAS  Google Scholar 

  • Harrich D, Garcia J, Mitsuyasu R, Gaynor R (1990) TAR-independent activation of the human immunodeficiency virus in phorbol ester-stimulated T lymphocytes. EMBO J 9: 4417–4423

    PubMed  CAS  Google Scholar 

  • Hart CE, Ou CY, Galphin JC, Moore J, Bacheler LT, Wasmuth JJ, Petteway SJ, Schochetman G (1989) Human chromosome 12 is required for elevated HIV-1 expression in human-hamster hybrid cells. Science 246: 488–491

    Article  PubMed  CAS  Google Scholar 

  • Hauber J, Cullen BR (1988) Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type I long terminal repeat. J Virol 62: 673–679

    PubMed  CAS  Google Scholar 

  • Hauber J, Perkins A, Heimer EP, Cullen BR (1987) Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci USA 84: 6364–6368

    Article  PubMed  CAS  Google Scholar 

  • Horwitz RJ, Li J, Greenblatt J (1987) An elongation control particle containing the N gene transcriptional antitermination protein of bacteriophage lambda. Cell 51: 631–641

    Article  PubMed  CAS  Google Scholar 

  • Hsu MC, Schutt AD, Holly M, Slice LW, Sherman MI, Richman DD, Potash MJ, Volsky DJ (1991) Inhibition of HIV replication in acute and chronic infections in vitro by a tat antagonist. Science 254: 1799–1802

    Article  PubMed  CAS  Google Scholar 

  • Jakobovits A, Smith DH, Jakobovits EB, Capon DJ (1988) A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator. Mol Cell Biol 8: 2555–2561

    PubMed  CAS  Google Scholar 

  • Jones KA, Kadonaga JT, Luciw PA, Tjian R (1986) Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232: 755–759

    Article  PubMed  CAS  Google Scholar 

  • Jones KA, Luciw, PA, Duchange N (1988) Structural arrangements of transcription control domains within the 5′-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes Dev 2: 1101–1114

    Article  PubMed  CAS  Google Scholar 

  • Kamine J, Chinnadurai G (1992) Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral tat protein and cellular transcription factor Spl. J Virol 66: 3932–3936

    PubMed  CAS  Google Scholar 

  • Kamine J, Subramanian T, Chinnadurai G (1991) Spl-dependent activation of a synthetic promoter by human immunodeficiency virus type 1 tat protein. Proc Natl Acad Sci USA 88: 8510–8514

    Article  PubMed  CAS  Google Scholar 

  • Kao SY, Caiman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330: 489–493

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Horikoshi M, Roeder RG (1991) Repression of HIV-1 transcription by a cellular protein. Science 251: 1476–1479

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Sumimoto H, Pognonec P, Chen CH, Rosen CA, Roeder RG (1992) HIV-1 tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev 6: 655–666

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Byrn R, Groopman J, Baltimore D (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 63: 3708–3713

    PubMed  CAS  Google Scholar 

  • Kim YS, Risser R (1993) TAR-independent transactivation of the murine cytomegalovirus major immediate-early promoter by the tat protein. J Virol 67: 239–248

    PubMed  CAS  Google Scholar 

  • Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17: 3551–3561

    Article  PubMed  CAS  Google Scholar 

  • Laspia MF, Rice AP, Mathews MB. (1989) HIV-1 tat protein increases transcriptional initiation and stabilizes elongation. Cell 59: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Laspia MF, Rice AP, Mathews MB (1990) Synergy between HIV-1 tat and adenovirus E1A is principally due to stabilization of transcriptional elongation. Genes Dev 4: 2397–2408

    Article  PubMed  CAS  Google Scholar 

  • Lazinski D, Grzadzielska E, Das A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59: 207–218

    Article  PubMed  CAS  Google Scholar 

  • Leonard J, Parrott C, Buckler WA, Turner W, Ross EK, Martin MA, Rabson AB (1989) The NF-kappa B-binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. J Virol 63: 4919–4924

    PubMed  CAS  Google Scholar 

  • Lu X, Welsh TM, Peterlin BM (1993) The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by tat. J Virol 67: 1752–1760

    PubMed  CAS  Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989) Functional dissection of the HIV-1 rev transactivator—derivation of a trans-dominant repressor of rev function. Cell 58: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Freimuth WW, Liu J, Boyle TJ, Lyerly HK, Cullen BR, Nabel GJ (1992) Stable expression of transdominant rev protein in human T cells inhibits human immunodeficiency virus replication. J Exp Med 176: 1197–1201

    Article  PubMed  CAS  Google Scholar 

  • Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 tat protein. EMBO J 10: 1733–1739

    PubMed  CAS  Google Scholar 

  • Marciniak RA, Sharp PA (1991) HIV-1 tat protein promoters formation of more-processive elongation complexes. EMBO J 10: 4189–4196

    PubMed  CAS  Google Scholar 

  • Marciniak RA, Calnan BJ, Frankel AD, Sharp PA (1990a) HIV-1 tat protein trans-activates transcription in vitro. Cell 63: 791–802

    Article  PubMed  CAS  Google Scholar 

  • Marciniak RA, Garcia BM, Sharp PA (1990b) Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus. Proc Natl Acad Sci USA 87: 3624–3628

    Article  PubMed  CAS  Google Scholar 

  • Meyers G (1988) Human retroviruses and AIDS. Los Alamos National Laboratories, Los Alamos, NM

    Google Scholar 

  • Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA-binding proteins. Science 245: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Modesti N, Garcia J, Debouck C, Peterlin M, Gaynor R (1991) Trans-dominant tat mutants with alterations in the basic domain inhibit HIV-1 gene expression. New Biologist 3: 759–768

    PubMed  CAS  Google Scholar 

  • Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701

    Article  PubMed  CAS  Google Scholar 

  • Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713

    Article  PubMed  CAS  Google Scholar 

  • Nelbock P, Dillon PJ, Perkins A, Rosen CA (1990) A cDNA for a protein that interacts with the human immunodeficiency virus tat transactivator. Science 248: 1650–1653

    Article  PubMed  CAS  Google Scholar 

  • Newstein M, Stanbridge EJ, Casey G, Shank PR (1990) Human chromosome 12 encodes a species-specific factor which increases human immunodeficiency virus type 1 tat-mediated trans-activation in rodent cells. J Virol 64: 4565–4567

    PubMed  CAS  Google Scholar 

  • Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR, Rosen CA (1993) The type-1 human immunodeficiency virus tat-binding protein is a transcriptional activator belonging to an additional family of evolutionary conserved genes. Proc Natl Acad Sci USA 90: 138–142

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Wong SF (1986) Demonstration of virus-specific transcriptional activator(s) in cells infected with HTLV-III by an in vitro cell-free system. Cell 47: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Olsen HS, Rosen CA (1992) Contribution of the TATA motif to tat-mediated transcriptional activation of human immunodeficiency virus gene expression. J Virol 66: 5594–5597

    PubMed  CAS  Google Scholar 

  • Pearson L, Garcia J, Wu F, Modesti N, Nelson J, Gaynor R (1990) A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA 85: 5079–5083

    Article  Google Scholar 

  • Peterlin BM, Luciw PA, Barr PJ, Walker MD (1986) Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus. Proc Natl Acad Sci USA 83: 9734–9738

    Article  PubMed  CAS  Google Scholar 

  • Puglisi JD, Tan R, Calnan BJ, Frankel AD, Williamson JR (1992) Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257: 76–80

    Article  PubMed  CAS  Google Scholar 

  • Rappaport J, Lee SJ, Khalili K, Wong SF (1989) The acidic amino-terminal region of the HIV-1 tat protein constitutes an essential activating domain. New Biologist 1: 101–110

    PubMed  CAS  Google Scholar 

  • Ratnasabapathy R, Sheldon M, Johal L, Hernandez N (1990) The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev 4: 2061–2074

    Article  PubMed  CAS  Google Scholar 

  • Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehom EA, Baumeister K et al (1985) Complete nucleotide sequences of the AIDS virus, HTLV-III. Nature 313: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Reinberg D, Roeder RG (1987) Factors involved in specific transcription by mammalian RNApolymerase II. Transcription factor IIS stimulates elongation of RNA chains. J Biol Chem 262: 3331–3337

    PubMed  CAS  Google Scholar 

  • Rice AP, Carlotti F (1990) Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 tat protein. J Virol 64: 1864–1868

    PubMed  CAS  Google Scholar 

  • Rice AP, Mathews MB (1988) Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332: 551–553

    Article  PubMed  CAS  Google Scholar 

  • Roberts JW. (1993) RNA and protein elements of E. coli, and λ transcription antitermination complexes. Cell 72: 653–655

    Article  PubMed  CAS  Google Scholar 

  • Rosen CA, Sodroski JG, Haseltine WA (1985) Location of cis-acting regulatory sequences in the human T-cell leukemia virus type I long terminal repeat. Proc Natl Acad Sci USA 82: 6502–6506

    Article  PubMed  CAS  Google Scholar 

  • Ross EK, Buckler WA, Rabson AB, Englund G, Martin MA (1991) Contribution of NF-kappa B-and Sp1-binidng motifs to the replicative capacity of human immunodeficiency virus type 1 : distinct patterns of viral growth are determined by T-cell types. J Virol 65: 4350–4358

    PubMed  CAS  Google Scholar 

  • Rougvie AE, Lis JT (1988) The RNA polymerase II molecule at the 5′ end of the uninduced hsp 70 gene of D. Melanogaster is transcriptionally engaged. Cell 54: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Delling U, Chen CH, Rosen CA, Sonenberg N (1990a) A bulge structure in HIV-1 TAR RNA is required for fat binding and fat-mediated trans-activation. Genes Dev 4: 1365–1373

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Parkin NT, Rosen C, Itovitch J, Sonenberg N (1990b) Structural requirements for trans-activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: importance of base pairing, loop sequence, and bulges in the tat-responsive sequence. J Virol 64: 1402–1406

    PubMed  CAS  Google Scholar 

  • Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine WA, Rosen CA (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63: 1–8

    PubMed  CAS  Google Scholar 

  • Sadaie MR, Benter T, Wong SF (1988) Site-directed mutagenesis of two trans-regulatory genes (tat-III,trs) of HIV-1. Science 239: 910–913

    Article  PubMed  CAS  Google Scholar 

  • Sanchez PR, Power MD, Barr PJ, Steimer KS, Stempien MM, Brown SS, Gee WW, Renard A, Randolph A, Levy JA et al (1985) Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227: 484–492

    Article  Google Scholar 

  • Selby MJ, Peterlin BM (1990) Trans-activation by HIV-1 tat via a heterologous RNA binding protein. Cell 62: 769–776

    Article  PubMed  CAS  Google Scholar 

  • Selby MJ, Bain ES, Luciw PA, Peterlin BM (1989) Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev 3: 547–558

    Article  PubMed  CAS  Google Scholar 

  • Sheldon M, Ratnasabapathy R, Hernandez N (1993) Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs. Mol Cell Biol 13: 1251–1263

    PubMed  CAS  Google Scholar 

  • Sheline CT, Milocco LH, Jones KA (1991) Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev 5: 2508–2520

    Article  PubMed  CAS  Google Scholar 

  • Shibuya H, Irie K, Ninomiya TJ, Goebl M, Taniguchi T, Matsumoto K (1992) New human gene encoding a positive modulator of HIV tat-mediated transactivation. Nature 357: 700–702

    Article  PubMed  CAS  Google Scholar 

  • Siekevitz M, Josephs SF, Dukovich M, Peffer N, Wong SF, Greene WC (1987) Activation of the HIV-1 LTR by T-cell mitogens and the trans-activator protein of HTLV-I. Science 238: 1575–1578

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Shida H, Maki M, Hatanaka M (1990) Effects of a highly basic region of human immunodeficiency virus tat protein on nucleolar localization. J Virol 64: 1803–1807

    PubMed  CAS  Google Scholar 

  • Sodroski J, Patarca R, Rosen C, Wong SF, Haseltine W (1985a) Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Sodroski J, Rosen C, Wong SF, Salahuddin SZ, Popovic M, Arya S, Gallo RC, Haseltine WA (1985b) Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227: 171–173

    Article  PubMed  CAS  Google Scholar 

  • Sopta M, Carthew RW, Greenblatt J (1985) Isolation of three proteins that bind to mammalian RNA polymerase II. J Biol Chem 260: 10353–10360

    PubMed  CAS  Google Scholar 

  • Southgate C, Zapp ML, Green MR (1990) Activation of transcription by HIV-1 tat protein tethered to nascent RNA through another protein. Nature 345: 640–642

    Article  PubMed  CAS  Google Scholar 

  • Southgate CD, Green MR (1991) The HIV-1 tat protein activates transcription from an upstream DNA-binding site: implications for tat function. Genes Dev 5: 2496–2507

    Article  PubMed  CAS  Google Scholar 

  • Spencer CA, Groudine M (1990) Transcription elongation and eukaryotic gene regulation. Oncogene 5: 777–785

    PubMed  CAS  Google Scholar 

  • Stringer KF, Ingles CJ, Greenblatt J (1990) Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345: 783–786

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Gallardo HF, Lingers GE, Gilboa E (1990) Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63: 601–608

    Article  PubMed  CAS  Google Scholar 

  • Swaffield JC, Bromberg JF, Johnston SA (1992) Alterations in a yeast protein resembling HIV tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357: 698–700

    Article  PubMed  CAS  Google Scholar 

  • Tada H, Rappaport J, Lashgari M, Amini S, Wong SF, Khalili K (1990) Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proc Natl Acad Sci USA 87: 3479–3483

    Article  PubMed  CAS  Google Scholar 

  • Taylor JP, Cupp C, Diaz A, Chowdhury M, Khalili K, Jimenez SA, Amini S (1992) Activation of expression of genes coding for extracellular matrix proteins in tat-producing glioblastoma cells. Proc Natl Acad Sci USA 89: 9617–9621

    Article  PubMed  CAS  Google Scholar 

  • Tiley LS, Madore SJ, Malim MH, Cullen BR (1992).The VP16 transcription activation domain is functional when targeted to a promoter-proximal RNA sequence. Genes Dev 6: 2077–2087

    Article  PubMed  CAS  Google Scholar 

  • Tong SS, Luciw PA, Peterlin BM (1987) Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci USA 84: 6845–6849

    Article  Google Scholar 

  • Wain HS, Sonigo P, Danos O, Cole S, Alizon M (1985) Nucleotide sequence of the AIDS virus, LAV. Cell 40: 9–17

    Article  Google Scholar 

  • Weeks KM, Crothers DM (1991) RNA recognition by tat-derived peptides: interaction in the major groove? Cell 66: 577–588

    Article  PubMed  CAS  Google Scholar 

  • Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM (1990) Fragments of the HIV-1 tat protein specifically bind TAR RNA. Science 249: 1281–1285

    Article  PubMed  CAS  Google Scholar 

  • Wright CM, Felber BK, Paskalis H, Pavlakis GN (1986) Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science 234: 988–992

    Article  PubMed  CAS  Google Scholar 

  • Wu FK, Garcia JA, Harrich D, Gaynor RB (1988) Purification of the human immunodeficiency virus type 1 enhancer and TAR-binding proteins EBP-1 and UBP-1. EMBO J 7: 2117–2130

    PubMed  CAS  Google Scholar 

  • Wu F, Garcia J, Sigman D, Gaynor R (1991) tat Regulates binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185. Genes Dev 5: 2128–2140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaynor, R.B. (1995). Regulation of HIV-1 Gene Expression by the Transactivator Protein Tat. In: Chen, I.S.Y., Koprowski, H., Srinivasan, A., Vogt, P.K. (eds) Transacting Functions of Human Retroviruses. Current Topics in Microbiology and Immunology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78929-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78929-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78931-1

  • Online ISBN: 978-3-642-78929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics