Skip to main content

Uptake of Foreign DNA by Mammalian Cells Via the Gastrointestinal Tract in Mice: Methylation of Foreign DNA—A Cellular Defense Mechanism

  • Chapter
Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 197))

Abstract

Many reviews have been published on eukaryotic DNA methylation, but in spite of intensive work for more than two decades, many of the biological implications of this genetic signal, by some termed an “epigenetic signal”, still remain to be elucidated. The nucleotide 5-methyldeoxycytidine (5-mC) has been recognized as a modulator of DNA motif-protein interactions and hence has the potential to affect many reactions of the DNA molecule. For my own motivation to continue research in this fascinating yet complex field of investigations, the finding has been decisively stimulating that in distinct, randomly selected segments of the human genome patterns of DNA methylation are identical at the nucleotide level or in larger regions among different individuals of diverse ethnic backgrounds (Kochanek et al. 1990, 1993; Behn-Krappa et al. 1991). Therefore, it is highly unlikely that patterns of DNA methylation in established mammalian genomes are the result of a randomly acting DNA methyltransferase system. The available evidence indicates that patterns of DNA methylation are species-, cell type- and DNA segment-specific and vary with stage of development. We do not yet know how these patterns arise, whether they can fluctuate, or what their functional significance may be. Most researchers in the field agree that motif-specific methylation serves an important function in the long-term silencing of eukaryotic promoters (Doerfler 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behn-Krappa A, Doerfler W (1994) Enzymatic amplification of synthetic oligodeoxyribonucleotides: implications for triplet repeat expansions in the human genome. Hum Mutat 3: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Behn-Krappa A, Holker I, Sandaradura de Silva U, Doerfler W (1991) Patterns of DNA methylation are indistinguishable in different individuals over a wide range of human DNA sequences. Genomics 11: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Caskey CT, Pizzuti A, Fu Y-H, Fenwick RG Jr, Nelson DL (1992) Triplet repeat mutations in human disease. Science 256: 784–789

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, Lewis AM Jr (1979) Host response to adenovirus 2-transformed hamster embryo cells. Cancer Res 39: 1455–1461

    PubMed  CAS  Google Scholar 

  • Deuring R, Doerfler W (1983) Proof of recombination between viral and cellular genomes in human KB cells productively infected by adenovirus type 12: structure of the junction site in a symmetric recombinant (SYREC). Gene 26: 283–289

    Article  PubMed  CAS  Google Scholar 

  • Deuring R, Klotz G, Doerfler W (1981) An unusual symmetric recombinant between adenovirus type 12 DNA and human cell DNA. Proc Natl Acad Sci USA 78: 3142–3146

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1968) The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc Natl Acad Sci USA 60: 636–643

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1970) Integration of the deoxyribonucleic acid of adenovirus type 12 into the deoxyribonucleic acid of baby hamster kidney cells. J Virol 6: 652–666

    PubMed  CAS  Google Scholar 

  • Doerfler W (1981) DNA methylation—a regulatory signal in eukaryotic gene expression. J Gen Virol 57: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Annu Rev Biochem 52: 93–124

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1984) DNA methylation: role in viral transformation and persistence. Adv Viral Oncol 4: 217–247

    CAS  Google Scholar 

  • Doerfler W (1989) Complexities in gene regulation by promoter methylation. Nucleic Acids Mol Biol 3: 92–119

    Google Scholar 

  • Doerfler W (1991) Patterns of DNA methylation-evolutionary vestiges of foreign DNA inactivation as a host defense mechanism—a proposal. Biol Chem Hoppe-Seyler 372: 557–564

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1992) Transformation of cells by adenoviruses: less frequently discussed mechanisms. In: Doerfler W, Böhm P (eds) Malignant transformation by DNA viruses. Molecular mechanisms. VCH, Weinheim, Germany, pp 87–109

    Google Scholar 

  • Doerfler W. (1993) Adenoviral DNA integration and changes in DNA methylation patterns: a different view of insertional mutagenesis. Prog Nucleic Acid Res Mol Biol 46: 1–36

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W, Tatzelt J, Orend G, Schorr J, Rosahl T, Fechteier K, Zock C, Lichtenberg U (1993) Viral and cellular strategies on integrated adenovirus genomes. In: Doerfler W, Böhm P (eds) Virus strategies. VCH, Weinheim, Germany, pp 369–400

    Google Scholar 

  • Eick D, Stabel S, Doerfler W (1980) Revertants of adenovirus type 12-transformed hamster cell line T637 as tools in the analysis of integration patterns. J Virol 36: 41–49

    PubMed  CAS  Google Scholar 

  • Ernberg I, Falk K, Minarovits J, Busson P, Tursz T, Masucci MG, Klein G (1989) The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. J Gen Virol 70: 2989–3002

    Article  PubMed  CAS  Google Scholar 

  • Groneberg J, Sutter D, Soboll H, Doerfler W (1978) Morphological revertants of adenovirus type 12-transformed hamster cells. J Gen Virol 40: 635–645

    Article  PubMed  CAS  Google Scholar 

  • Günthert U, Schweiger M, Stupp M, Doerfler W (1976) DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc Natl Acad Sci USA 73: 3923–3927

    Article  PubMed  Google Scholar 

  • Hasse A, Schulz WA (1994) Enhancement of reporter gene de novo methylation by DNA fragments from the α-fetoprotein control region. J Biol Chem 269: 1821–1826

    PubMed  CAS  Google Scholar 

  • Heller H, Wilgenbus P, Doerfler W (1995) The chromosomal insertion of adenovirus type 12 DNA and enhanced methylation of cellular genes in transformed and tumor cells (submitted)

    Google Scholar 

  • Hofschneider PH (1963) Untersuchungen über kleine E. coli K12 Bakteriophagen. Z Naturforsch 18b: 203–210

    CAS  Google Scholar 

  • Hu, L-F, Minarovits J, Cao, S-L, Contreras-Salazar B, Rymo L, Falk K, Klein G, Ernberg I. (1991) Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein-Barr virus BNLF-1 5′-flanking region. J Virol 65: 1558–1567

    PubMed  CAS  Google Scholar 

  • Johansson K, Persson H, Lewis AM, Pettersson U, Tibbetts C, Philipson L (1978) viral DNA sequences and gene products in hamster cells transformed by adenovirus type 2. J Virol 27: 628–639

    PubMed  CAS  Google Scholar 

  • Kämmer C, Doerfler W (1995) Genomic sequencing reveals absence of DNA methylation in the major late promoter of adenovirus type 2 DNA in the virion and in productivity infected cells, (submitted)

    Google Scholar 

  • Knight SJL, Flannery AV, Hirst MC, Campbell L, Christodoulou Z, Phelps SR, Pointon J, Middleton-price HR, Barnicoat A, Pembrey ME, Holland J, Oostra BA, Bobrow M, Davies KE (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Kochanek S, Toth M, Dehmel A, Renz D, Doerfler W (1990) Interindividual concordance of methylation profiles in human genes for tumor necrosis factors alpha and beta. Proc Natl Acad Sci USA 87: 8830–8834

    Article  PubMed  CAS  Google Scholar 

  • Kochanek S, Renz D, Doerfler W (1993) DNA methylation in the Alu sequences of diploid and haploid primary human cells: functional implication. EMBO J 12: 1141–1151

    PubMed  CAS  Google Scholar 

  • Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) Nature Genet 6: 9–13

    Article  PubMed  CAS  Google Scholar 

  • Kruczek I, Doerfler W (1982) The unmethylated state of the promoter/leader and 5′-regions of integrated adenovirus genes correlates with gene expression. EMBO J 1: 409–414

    PubMed  CAS  Google Scholar 

  • Kuhlmann I, Doerfler W (1982) Shifts in the extent and patterns of DNA methylation upon explanation and subcultivation of adenovirus type 12-induced hamster tumor cells. Virology 118: 169–180

    Article  PubMed  CAS  Google Scholar 

  • Lettmann C, Schmitz B, Doerfler W (1991) Persistence or loss of preimposed methylation patterns and de novo methylation of foreign DNA integrated in transgenic mice. Nucleic Acids Res 19: 7131–7137

    Article  PubMed  CAS  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role of DNA methylation in genomic imprinting. Nature 366: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg U, Zock C, Doerfler W (1987) Insertion of adenovirus type 12 DNA in the vicinity of an intracisternal A particle genome in Syrian hamster tumor cells. J Virol 61: 2719–2726

    PubMed  CAS  Google Scholar 

  • Lichtenberg U, Zock C, Doerfler W (1988) Integration of foreign DNA into mammalian genome can be associated with hypomethylation at site of insertion. Virus Res 11: 335–342

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Cremer T (1992) Chromosome analysis by nonisotopic in situ hybridization. In: Rooney DE, Czepulkowski BH (eds) Human cytogenetics. A practical approach, vol I, Oxford University Press, Oxford, pp 157–192

    Google Scholar 

  • Linn F, Heidmann I, Saedler H, Meyer P (1990) Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222:329–336

    Article  PubMed  CAS  Google Scholar 

  • Lueders KK, Kuff EL (1981) Sequences homologous to retrovirus-like genes of the mouse are present in multiple copies in the Syrian hamster genome. Nucl Acids Res 9: 5917–5930

    Article  PubMed  CAS  Google Scholar 

  • Muiznieks I, Doerfler W (1994a) The impact of 5′-CG-3’ methylation on the activity of different eukaryotic promoters: a comparative study. FEBS Lett 334: 251–254

    Article  Google Scholar 

  • Muiznieks I, Doerfler W (1994b) The topology of the promoter of RNA polymerase II-and 111-transcribed genes is modified by the methylation of 5′-CG-3’ dinucleotides. Nucl Acids Res 22: 2568–2575

    Article  PubMed  CAS  Google Scholar 

  • Mummaneni P, Bishop PL, turker MS (1993) A cis-acting element accounts for a conserved methylation pattern upstream of the mouse adenine phosphoribosyl transferase gene. J Biol Chem 268: 552–558

    Google Scholar 

  • Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, Yamada M (1994) Dentatorubal and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet 6: 14–18

    Article  PubMed  CAS  Google Scholar 

  • Oberlé I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boué J, Bertheas MF, Mandel JL (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097–1102

    Article  Google Scholar 

  • Orend G, Kuhlmann I, Doerfler W (1991) Spreading of DNA methylation accross integrated foreign (adenovirus type 12) genomes in mammalian cells. J Virol 65: 4301–4308

    PubMed  CAS  Google Scholar 

  • Orend G, Knoblanch M, Kämmer C, Tjia ST, Schmitz B, Unkwitz A, Meyer zu Altenschildesche G, Maas J, Doerfler W (1995) The initiation of de novo methylation of foreign DNA integrated into a mammlian genome is not exclusively targeted by nucleotide sequence. J. Virol 69 (in press)

    Google Scholar 

  • Orr HT, Chung M-Y, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet 4: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Ragot T, Vincent N, Chafey P, Vigne E, Gilgenkrantz H, Couton D, Cartaud J, Briand P, Kaplan J-C, Perricaudet M, Kahn A (1993) Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361: 647–650

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Collick A, Norris ML, Barton SC, Surani MA (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328: 248–251

    Article  PubMed  CAS  Google Scholar 

  • Richards RI, Sutherland GR (1992) Dynamic mutations: a new class of mutations causing human disease. Cell 70: 709–712

    Article  PubMed  CAS  Google Scholar 

  • Riggins GJ, Lokey LK, Chastain JL, Leiner HA, Sherman SL, Wilkinson KD, Warren ST (1992) Human genes containing polymorphic trinucleotide repeats. Nature Genet 2: 186–191

    Article  PubMed  CAS  Google Scholar 

  • Rosahl T, Doerfler W (1992) Alterations in the levels of expression of specific cellular genes in adenovirus-infected and -transformed cells. Virus Res 26: 71–90

    Article  PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Prim-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Sapienza C, Peterson AC, Rossant J, Balling R (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Schetter C, Grünemann B, Hölker I, Doerfler W (1993) Patterns of frog virus 3 DNA methylation and DNA methyltransferase activity from nuclei of infected cells. J Virol 67: 6973–6978

    PubMed  CAS  Google Scholar 

  • Schröer J, Doerfler W (1995) Extensive association of adenovirus type 12 DNA with chromosomes early after the infection of hamster and human cells, (submitted)

    Google Scholar 

  • Schubbert R, Doerfler W (1995) Fragments of foreign DNA ingested by mice can be recovered in peripheral white blood cells, (submitted)

    Google Scholar 

  • Schubbert R, Lettmann CM, Doerfler W (1994) Ingested foreign DNA (phage M13) survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen Genetics 242: 495–504

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Article  PubMed  CAS  Google Scholar 

  • Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Sutter D, Doerfler W (1979) Methylation of integrated viral DNA sequences in hamster cells transformed by adenovirus 12. Cold Spring Harb Symp Quant Biol 44: 565–568

    Google Scholar 

  • Sutter D, Doerfler W (1980) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Sutter D, Westphal M, Doerfler W (1978) Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell 14: 569–585

    Article  PubMed  CAS  Google Scholar 

  • Swain JL, Stewart TA, Leder P (1987) Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Szyf M, Tanigawa G, McCarthy PL Jr (1990) A DNA signal from the Thy-1 gene defines de novo methylation patterns in embryonic stem cells. Mol Cell Biol 10: 4396–4400

    PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotiderepeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983

    Article  Google Scholar 

  • Toth M, Lichtenberg U, Doerfler W (1989) Genomic sequencing reveals a 5-methyldeoxycytosine-free domain in active promoters and the spreading of preimposed methylation patterns. Proc Natl Acad Sci USA 86:3728–3732

    Article  PubMed  CAS  Google Scholar 

  • Toth M, Müller U, Doerfler W (1990) Establishment of de novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J Mol Biol 214: 673–683

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Neumann R, Kuhlmann I, Sutter D, Doerfler W (1980) DNA methylation and viral gene expression in adenovirus-transformed and-infected cells. Nucleic Acids Res 8: 2461–2473

    Article  PubMed  CAS  Google Scholar 

  • Wienhues U, Doerfler W (1985) Lack of evidence for methylation of parental and newly synthesized adenovirus type 2 DNA in productive infections. J Virol 56: 320–324

    PubMed  CAS  Google Scholar 

  • Willis DB, Granoff A (1980) Frog virus 3 DNA is heavily methylated at CpG sequences. Virology 107:250–257

    Article  PubMed  CAS  Google Scholar 

  • Willis DB, Thompson JP, Essani K, Goorha R (1989) Transcription of methylated viral DNA by eukaryotic RNA polymerase II. Cell Biophysics 15: 97–111

    PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doerfler, W. (1995). Uptake of Foreign DNA by Mammalian Cells Via the Gastrointestinal Tract in Mice: Methylation of Foreign DNA—A Cellular Defense Mechanism. In: Meyer, P. (eds) Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes. Current Topics in Microbiology and Immunology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79145-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79145-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79147-5

  • Online ISBN: 978-3-642-79145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics