Skip to main content

The Actomyosin Interaction

  • Conference paper
The Cytoskeleton

Abstract

An atomic model for the rigor complex of F-actin and the myosin head has been obtained by combining the molecular structures of the individual proteins (Rayment et al. 1993a) (Holmes et al. 1990) (Lorenz et al. 1993) with the low resolution electron density maps of the actomyosin complex derived by cryoelectron microscopy (Rayment et al. 1993b) (Schröder et al. 1993). A model for the actomyosin interaction has been proposed in which the actin binding sites and nucleotide binding sites of SI are functionally linked by a cleft in the 50K domain of SI which is thought to close on binding to F-actin (Rayment et al. 1993b). The closing of the cleft is likely to be an essential part of the weak/strong sequence of the actomyosin interaction. The initial actomyosin interaction probably involves only part of the surface, the full rigor complex develops on closure of the cleft. The obligatory sequencestereo specific-weak/strong prevents the cross-bridge from binding unstrained in the strong state. Tropomyosin in the “off” state appears to inhibit the closing of the cleft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bertrand R, Derancourt J, Kassab R (1992) Molecular movements in the actomyosin complex: F-actin-promoted internal cross-linking of the 25- and 20-kilodalton heavy chain fragments of skeletal myosin-subfragment-1. Biochemistry 31: 12219–12226

    Article  PubMed  CAS  Google Scholar 

  • Botts J, Thomason JF, Morales MF (1989) On the origin and transmission of force in actomyosin subfragment 1. Proc Natl Acad Sci USA 86: 2204–2208

    Article  PubMed  CAS  Google Scholar 

  • Brenner B (1990) Muscle mechanics and biochemical kinetics. Topics in molecular and structural biology (ed Squire JM) 13: 77–143

    Google Scholar 

  • Brenner B, Schoenberg M, Chalovich JM, Greene LE, Eisenberg E (1982) Evidence for cross- bridge attachment in released muscle at low ionic strength. Proc Natl Acad Sci USA 79: 7288–7291

    Article  PubMed  CAS  Google Scholar 

  • Cooke R (1986) The mechanism of muscle contraction. CRC Crit Rev Biochem 21: 53–118

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibres. Biophys J 48: 789–798

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Green LE (1980) The relation of muscle biochemistry to muscle physiology. Ann Rev Physiol 42: 293–309

    Article  CAS  Google Scholar 

  • Geeves MA (1992) The actomyosin ATPase: a two-state system. Phil Trans R Soc Lond B 336: 63–70

    Article  CAS  Google Scholar 

  • Goody RS, Holmes KC (1983) Cross-bridges and the mechanism of muscle muscle contraction. Biochim Biophys Acta 726: 13–39

    PubMed  CAS  Google Scholar 

  • Hill TL (1974) TTieoretical formulation for the sliding filament theory of contraction in striated muscle. Part 1. Prog Biophys Molec Biol 28: 267–340

    Article  CAS  Google Scholar 

  • Huston EE, Grammer JC, Yount RG (1988) Flexibility of the myosin heavy chain: direct evidence that the region containing SHI and SH2 can move 10 A under the influence of nucleotide binding. Biochemistry 27: 8945–8952

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1974) Muscular contraction. J Gen Physiol (Lond.) 243: 1–43

    CAS  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164: 1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Simmons RM, Faruqui AR, Kress M, Bordas J, Koch MHJ (1981) Millisecond time-resolved changes in X-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc Natl Acad Sci USA 78: 2297–2301

    Article  PubMed  CAS  Google Scholar 

  • Irving M, Lombardi V, Piazzesi G, Ferenczi MA (1992) Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature (Lond) 357: 156–158

    Article  CAS  Google Scholar 

  • Jencks WP (1980) The utilisation of binding energy in coupled vectorial processes. Advances in enzymology and related areas of molecular biology 51: 75–106

    PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347: 37–44

    Google Scholar 

  • Lombardi V, Piazzesi G, Linari M (1992) Rapid regeneration of the actin-myosin power stroke in contracting muscle. Nature (Lond) 35: 638–641

    Article  Google Scholar 

  • Lorenz M, Popp D, Holmes KC (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol 234: 826–836

    Article  PubMed  CAS  Google Scholar 

  • Lorenz M, Popp D, Poole KV, Rosenbaum G, Holmes KC (1994) An atomic model of the unregulated thin filament obtained by X-ray diffraction from orientated actin-tropomyosin gels. Molecular motors. Structure, mechanics and energy transduction. Airlie, Virginia, Biophysical Society.

    Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis of actomyosin. Biochemistry 10: 4617–4624

    Article  PubMed  CAS  Google Scholar 

  • Maita T, Yajima E, Nagata S, Miyanishi T, Nakayama S, Matsuda G (1991) The primary structure of skeletal muscle heavy chain: IV sequence of the rod, and the complete 1938- residue sequence of the heavy chain. J Biochem (Japan) 110: 75–87

    CAS  Google Scholar 

  • McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65: 693–701

    Article  PubMed  CAS  Google Scholar 

  • Mornet D, Bertrand R, Pantel P, Audemard E, Kassab R (1981) Structure of the acto-myosin interface. Nature (Lond) 292: 301–306

    Article  CAS  Google Scholar 

  • Mornet D, Pantel P, Audemard E, Kassab R (1979) The limited tryptic cleavage of the chy- motriptic SI: an approach to the characterisation of the actin site in myosin heads. Biochem Biophys Res Comm 89: 925 - 932

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Bhandari D, Maupin P, Wachstock D, Weeds A, Zol H (1993) Direct visualization by electron microscopy of the weakly-bound intermediates in the actomyosin ATPase cycle. Biophys J 64: 454–471

    Article  PubMed  CAS  Google Scholar 

  • Poole KV, Holmes KC, Rayment I, Lorenz M (1994) Control of the actomyosin interaction. Molecular motors. Structure, mechanics and energy transduction, Airlie, Virginia, Biophysical Society

    Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1933a) The three-dimensional structure of a molecular motor, myosin subfragment-1. Science 261: 50–58

    Article  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993b) Structure of the actomyosin complex and its implications for muscle contraction. Science 261: 58–65

    Article  PubMed  CAS  Google Scholar 

  • Schröder RR, Manstein DJ, Jahn W, Holden HM, Rayment I, Holmes KC, Spudich JA (1993) The interaction of the Dictyostelium myosin head with actin: a structural model of decorated actin. Nature 364: 171–174

    Article  PubMed  Google Scholar 

  • Sleep JA, Hutton RL (1980) Exchange between inorganic phosphate and adenosine 5-triphosphate in the medium by actomyosin subfragment 1. Biochemistry 19: 1276–1283

    Article  PubMed  CAS  Google Scholar 

  • Sutoh K, Tokunaga M, Wakabayashi T (1989) Electron microscope mappings of myosin head with site-directed antibodies. J Mol Biol 206: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Taylor EW (1991) Kinetic studies on the association and dissociation of myosin subfragment 1 and actin. J Biol Chem 266: 294–302

    PubMed  CAS  Google Scholar 

  • Wray J, Goody RS, Holmes KC (1988) Towards a molecular mechanism for the cross bridge cycle. Advances in experimental medicine and biology 226: 49–59

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holmes, K.C. (1995). The Actomyosin Interaction. In: Jockusch, B.M., Mandelkow, E., Weber, K. (eds) The Cytoskeleton. Colloquium der Gesellschaft für Biologische Chemie 14.–16. April 1994 in Mosbach/Baden, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79482-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79482-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79484-1

  • Online ISBN: 978-3-642-79482-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics