Skip to main content

Post-transcriptional Control of Adenovirus Gene Expression

  • Chapter
The Molecular Repertoire of Adenoviruses II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/2))

Abstract

Adenovirus genes are expressed in a defined, temporally controlled manner during the course of a lytic infection. The mechanisms responsible for this control have been the subject of intense study. These studies have shown that, although control of transcription initiation is a major determinant of the observed pattern of viral gene expression, post-transcriptional control is also crucial to a successful outcome of infection. It is these latter mechanisms which are the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam SA, Dreyfuss G (1987) Adenovirus proteins associated with mRNA and hnRNA in infected HeLa cells. J Virol 61: 3276–3283

    PubMed  CAS  Google Scholar 

  • Adami G, Babiss LE (1991) DNA template effect on RNA splicing: two copies of the same gene in the same nucleus are processed differently. EMBO J 11: 3457–3465

    Google Scholar 

  • Akusjärvi G, Persson H (1981) Controls of RNA splicing and termination in the major late adenovirus transcription unit. Nature 292: 420–426

    PubMed  Google Scholar 

  • Akusjärvi G, Pettersson U, Roberts RJ (1986) Structure and function of the adenovirus-2 genome. In: Doerfler W (ed) Adenovirus DNA: the viral genome and its expression. Martin Nijhoff, Boston, pp 53–95

    Google Scholar 

  • Aleström P, Akusjärvi G, Perricaudet M, Mathews MB, Klessig DF, Pettersson U (1980) The gene for polypeptide IX of adenovirus type 2 and its unspliced messenger RNA. Cell 19: 671–681

    PubMed  Google Scholar 

  • Anderson CW, Schmitt RC, Smart JE, Lewis JB (1984) Early region 1B of adenovirus 2 encodes two coterminal proteins of 495 and 155 amino acid residues. J Virol 50: 387–396

    PubMed  CAS  Google Scholar 

  • Babich A, Feldman LT, Nevins JR, Darnell JE, Weinberger C (1993) Effects of adenovirus on metabolism of specific host mRNAs: transport control and specific translational discrimination. Mol Cell Biol 3: 1212–1221

    Google Scholar 

  • Babiss LE, Ginsberg HS (1984) Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J Virol 50: 202–212

    PubMed  CAS  Google Scholar 

  • Babiss LE, Fisher PB, Ginsberg HS (1984) Effect on transformation of mutations in the early region 1b-encoded 21- and 55-kilodalton proteins of adenovirus 5. J Virol 52: 389–395

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS, Darnell JE Jr (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5: 2552–2558

    PubMed  CAS  Google Scholar 

  • Bello LJ, Ginsberg HS (1967) Inhibition of host protein synthesis in type 5 adenovirus-infected cells. J Virol 1: 843–850

    PubMed  CAS  Google Scholar 

  • Beltz GA, Flint SJ (1979) Inhibition of HeLa cell protein synthesis during adenovirus infection: restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131: 353–373

    PubMed  CAS  Google Scholar 

  • Berezney R, Coffey DS (1977) Nuclear matrix: isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol 73: 616–637

    PubMed  CAS  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Nat Acad Sci USA 74: 3171–3175

    PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    PubMed  CAS  Google Scholar 

  • Bhat BM, Wold WS (1986) Genetic analysis of mRNA synthesis in adenovirus region E3 at different stages of productive infection by RNA-processing mutants. J Virol 60: 54–63

    PubMed  CAS  Google Scholar 

  • Bodnar JW, Hanson PI, Polvino-Bodnar M, Zempsky W, Ward DC (1989) The terminal regions of adenovirus and minute virus of mice DNAs are preferentially associated with the nuclear matrix in infected cells. J Virol 63: 4344–4353

    PubMed  CAS  Google Scholar 

  • Bos JL, Polder LJ, Bernards R, Scrier PI, van den Elsen PJ, van der Eb AJ, van Ormondt H (1981) The 2.2 kb E1 b mRNA of human Ad12 and ad5 codes for two tumor antigens starting at different AUG triplets. Cell 27: 121–131

    PubMed  CAS  Google Scholar 

  • Brady HA, Wold WSM (1988) Competition between splicing and polyadenylation reactions determines which adenovirus region E3 mRNAs are synthesized. Mol Cell Biol 8: 3291–3297

    PubMed  CAS  Google Scholar 

  • Brady HA, Scaria A, Wold WSM (1992) Map of cis-acting sequences that determine alternative premessenger-RNA processing in the E3 complex transcription unit of adenovirus. J Virol 66: 5914–5923

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63: 631–638

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1990) Interaction of adenoviral E4 and E1b products in late gene expression. Virology 174: 345–353

    PubMed  CAS  Google Scholar 

  • Bridge E, Hemstrom C, Pettersson U (1991) Differential regulation of adenovirus late transcription units by the products of early region 4. Virology 183: 260–266

    PubMed  CAS  Google Scholar 

  • Bridge E, Carmo-Fonseca M, Lamond A, Pettersson U (1993) Nuclear organization of splicing small nuclear ribonucleoproteins in adenovirus-infected cells. J Virol 67: 5792–5802

    PubMed  CAS  Google Scholar 

  • Chang DD, Sharp PA (1990) Messenger RNA transport and HIV rev regulation. Science 249: 614–615

    PubMed  CAS  Google Scholar 

  • Chebli K, Gattoni R, Schmitt P, Hildwein G, Stevenin J (1989) The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol Cell Biol 9: 4852–4861

    PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR (1978) The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell 15: 497–510

    PubMed  CAS  Google Scholar 

  • Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12: 1–8

    PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134: 265–303

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Jacrot B (1987) The sequence of adenovirus fiber: similarities and differences between serotypes 2 and 5. Virology 161: 549–554

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Bieber F, Jacrot B (1992) The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186: 280–285

    PubMed  CAS  Google Scholar 

  • Ciejek EM, Nordstrom JL, Tsai M-J, O’Malley BW (1982) Ribonucleic acid precursors are associated with the chick oviduct nuclear matrix. Biochemistry 21: 4945–4953

    PubMed  CAS  Google Scholar 

  • Cladaras C, Wold WSM (1985) DNA sequence of the early E3 transcription unit of adenovirus 5. Virology 140: 28–43

    PubMed  CAS  Google Scholar 

  • Cutt JR, Shenk T, Hearing P (1987) Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol 61: 543–552

    PubMed  CAS  Google Scholar 

  • Delsert C, Morin N, Klessig DF (1989) Cis-acting elements and a trans-acting factor affecting alternative splicing of adenovirus L1 transcripts. Mol Cell Biol 9: 4364–4371

    PubMed  CAS  Google Scholar 

  • DeZazzo JD (1990) Poly(A) site selection in the adenovirus type 2 major late transcription unit: processing and regulatory signals. PhD thesis, University of Michigan

    Google Scholar 

  • DeZazzo JD, Imperiale MJ (1989) Sequences upstream of AAUAAA influence poly(A) site selection in a complex transcription unit. Mol Cell Biol 9: 4951–4961

    PubMed  CAS  Google Scholar 

  • DeZazzo JD, Falck-Pedersen E, Imperiale MJ (1991) Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol Cell Biol 11: 5977–5984

    PubMed  CAS  Google Scholar 

  • Dix I, Leppard KN (1993) Regulated splicing of adenovirus type 5 E4 transcripts and regulated cytoplasmic accumulation of E4 mRNA. J Virol 67: 3226–3231

    PubMed  CAS  Google Scholar 

  • Dolph PJ, Racaniello V, Villamarin A, Palladino F, Schneider RJ (1988) The adenovirus tripartite leader eliminates the requirement for cap binding protein during translation initiation. J Virol 62: 2059–2066

    PubMed  CAS  Google Scholar 

  • Dolph PJ, Huang J, Schneider RJ (1990) Translation by the adenovirus tripartite leader: elements which determine independence from cap-binding protein complex. J Virol 64: 2669–2677

    PubMed  CAS  Google Scholar 

  • Domenjoud L, Gallinaro H, Kister L, Meyer S, Jacob M (1991) Identification of a specific exon sequence that is a major determinant in the selection between a natural and a cryptic 5′ splice site. Mol Cell Biol 11: 4581–4590

    PubMed  CAS  Google Scholar 

  • Dressier GR, Fraser NW (1987) DNA sequences downstream of the adenovirus type 2 fiber poly-adenylation site contain transcription termination signals. J virol 61: 2770–2776

    Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289–321

    Google Scholar 

  • Dunn AR, Hassel JA (1977) A novel method to map transcripts: evidence for homology between an adenovirus mRNA and discrete multiple regions of the viral genome. Cell 12: 23–36

    PubMed  CAS  Google Scholar 

  • Evans R, Weber J, Ziff E, Darnell JE (1979) Premature termination during adenovirus transcription. Nature 278: 367–370

    PubMed  CAS  Google Scholar 

  • Falck-Pedersen E, Logan J (1989) Regulation of poly(A) site selection in adenovirus. J Virol 63: 532–541

    PubMed  CAS  Google Scholar 

  • Flint SJ, Beltz G, Linzer DIH (1983) Synthesis and processing of simian virus 40-specific RNA in adenovirus-infected, simian virus 40-transformed human cells. J Mol Biol 167: 335–359

    PubMed  CAS  Google Scholar 

  • Fraser NW, Nevins JR, Ziff E, Darnell JE Jr (1979) The major late adenovirus type-2 transcription unit: termination is downstream from the last poly(A) site. J Mol Biol 129: 643–656

    PubMed  CAS  Google Scholar 

  • Freyer GA, Katoh Y, Roberts RJ, (1984) Characterization of the major mRNAs from adenovirus 2 early region 4 by cDNA cloning and sequencing. Nucleic Acids Res 12: 3503–3519

    PubMed  CAS  Google Scholar 

  • Gattoni R, Schmitt P, Stevenin J (1988) In vitro splicing of adenovirus E1A transcripts: characterization of novel reactions and of multiple branch points far from the 3′ splice site. Nucleic Acids Res 16: 2389–2409

    PubMed  CAS  Google Scholar 

  • Gattoni R, Chebli K, Himmelspach M, Stevenin J (1991) Modulation of alternative splicing of adenoviral E1A transcripts: factors involved in the early-to-late transition. Genes Dev 5: 1847–1858

    PubMed  CAS  Google Scholar 

  • Halbert DN, Cutt JR, Shenk T (1985) Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression and host cell shutoff. J Virol 56: 250–257

    PubMed  CAS  Google Scholar 

  • Hales KH, Birk JM, Imperiale MJ (1988) Analysis of adenovirus type 2 L1 RNA 3′-end formation in vivo and in vitro. J Virol 62: 1464–1468

    PubMed  CAS  Google Scholar 

  • Harper JE, Manley JL (1991) A novel protein factor is required for use of distal alternative 5′ splice sites in vitro. Mol Cell Biol 11: 5945–5953

    PubMed  CAS  Google Scholar 

  • Harrison T, Graham F, Williams J (1977) Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77: 319–329

    PubMed  CAS  Google Scholar 

  • Hasson TB, Soloway PD, Ornelles DA, Doerfler W, Shenk T (1989) Adenovirus L1 52- and 55-kilodalton proteins are required for assembly of virions. J Virol 63: 3612–3621

    PubMed  CAS  Google Scholar 

  • Hayes BW, Telling GC, Myat MM, Williams JF, Flint SJ (1990) The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species. J Virol 64: 2732–2742

    PubMed  CAS  Google Scholar 

  • Hemstrom C, Nordqvist K, Pettersson U, Virtanen A (1988) Gene product of region E4 of adenovirus type 5 modulates accumulation of certain viral polypeptides. J Virol 62: 3258–3264

    PubMed  CAS  Google Scholar 

  • Ho YS, Galos R, Williams J (1982) Isolation of type 5 adenovirus mutants with a cold sensitive host range phenotype: genetic evidence of an adenovirus transformation maintenance function. Virology 122: 109–124

    PubMed  CAS  Google Scholar 

  • Huang J, Schneider RJ (1991) Adenovirus inhibition of cellular protein synthesis involves inactivation of cap binding protein. Cell 65: 271–280

    PubMed  CAS  Google Scholar 

  • Huang M-M, Hearing P (1989) Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 63: 2605–2615

    PubMed  CAS  Google Scholar 

  • Iwamoto S, Eggerding F, Falck-Pedersen E, Darnell JE Jr (1986) Transcription unit mapping in adenovirus: regions of termination. J Virol 59: 112–119

    PubMed  CAS  Google Scholar 

  • Johnston JM, Anderson KP, Klessig DF (1985) Partial block to transcription of human adenovirus type 2 late genes in abortively infected monkey cells. J Virol 56: 378–385

    PubMed  CAS  Google Scholar 

  • Ketner G, Bridge E, Virtanen A, Hemstrom C, Pettersson U (1989) Complementation of adenovirus E4 mutants by transient expression of E4 cDNA and deletion plasmids. Nucleic Acids Res 17: 3037–3048

    PubMed  CAS  Google Scholar 

  • Kinloch R, Mackay N, Mautner V (1984) Adenovirus hexon: sequence comparision of subgroup C serotypes 2 and 5. J Biol Chem 259: 6431–6436

    PubMed  CAS  Google Scholar 

  • Klessig D (1977) Two adenovirus messenger RNAs have a common 5′ terminal-leader sequence encoded at least 10kb upstream form their main coding regions. Cell 12: 9–12

    PubMed  CAS  Google Scholar 

  • Kreivi J-P, Akusjarvi G (1994) Regulation of adenovirus alternative RNA splicing at the level of commitment complex formation. Nucleic Acids Res 22: 332–337

    PubMed  CAS  Google Scholar 

  • Kreivi J-P, Zerivitz K, Akusjarvi G (1991) Sequences involved in the control of adenovirus L1 alternative RNA splicing. Nucleic Acids Res 19: 2379–2386

    PubMed  CAS  Google Scholar 

  • Kumar A, Pederson T (1975) Comparison of proteins bound to heterogeneous nuclear RNA and messenger RNA in HeLa cells. J Mol Biol 96: 353–365

    PubMed  CAS  Google Scholar 

  • Larsson S, Kreivi J-P, Akusjarvi G (1991) Control of adenovirus alternative RNA splicing: effect of viral DNA replication on splice site choice. Gene 107: 219–227

    PubMed  CAS  Google Scholar 

  • Larsson S, Svensson C, Akusjarvi G (1992) Control of adenovirus major late gene expression at multiple levels. J Mol Biol 225: 287–298

    PubMed  CAS  Google Scholar 

  • Le Moullec JM, Akusjarvi G, Stalhandske P, Pettersson U, Chambraud B, Gilardi P, Nasri M, Perricaudet M (1983) Polyadenylic acid addition sites in the adenovirus type 2 major late transcription unit. J Virol 48: 127–134

    PubMed  Google Scholar 

  • Leppard KN (1993) Selective effects on adenovirus late gene expression of deleting the E1b 55K protein. J Gen Virol 74: 575–582

    PubMed  CAS  Google Scholar 

  • Leppard KN, Shenk T (1989) The adenovirus E1B 55kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 8: 2329–2336

    PubMed  CAS  Google Scholar 

  • Leppard KN, Pilder S, Moore M, Logan J, Shenk T (1987) An adenovirus oncogene post-tran- scriptionally modulates mRNA accumulation. In: Kjeldgaard N, Forchhammer J (eds) Viral carcinogenesis. Alfred Benzon Symposium 24. Munksgaard, Copenhagen, pp 196–208

    Google Scholar 

  • Lewis JB, Anderson CW, Atkins JF (1977) Further mapping of late adenovirus genes by cell-free translation of RNA selected by hybridization to specific DNA fragments. Cell 12: 37–44

    PubMed  CAS  Google Scholar 

  • Logan J, Shenk T (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc Natl Acad Sci USA 81: 3655–3659

    PubMed  CAS  Google Scholar 

  • Logan J, Pilder S, Shenk T (1984) Functional analysis of the adenovirus type-5 early region 1B. Cancer Cells 2: 527–532

    CAS  Google Scholar 

  • Mandel JL (1989) Dystrophin: the gene and its product. Nature 339: 584–586

    PubMed  CAS  Google Scholar 

  • Manley JL (1988) Polyadenylation of mRNA precursors. Biochim Biophys Acta 950: 1–12

    PubMed  CAS  Google Scholar 

  • Manley JL, Sharp PA, Gefter ML (1982) RNA synthesis in isolated nuclei. Processing of adenovirus serotype 2 late messenger RNA precursors. J Mol Biol 159: 581–599

    PubMed  CAS  Google Scholar 

  • Mann KP, Weiss EA, Nevins JR (1993) Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor. Mol Cell Biol 13: 2411–2419

    PubMed  CAS  Google Scholar 

  • Mathews MB, Shenk T (1991) Adenovirus virus-associated RNA and translational control. J Virol 65: 5657–5662

    PubMed  CAS  Google Scholar 

  • Mayeda A, Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68: 365–375

    PubMed  CAS  Google Scholar 

  • Mayeda A, Helfman DM, Krainer AR (1993) Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol Cell Biol 13: 2993–3001

    PubMed  CAS  Google Scholar 

  • McNally MT, Beemon K (1992) Intronic sequences and 3′ splice sites control Rous sarcoma virus RNA splicing. J Virol 66: 6–11

    PubMed  CAS  Google Scholar 

  • Moen PT Jr, Fox E, Bodnar JW (1990) Adenovirus and minute virus of mice DNAs are localized at the nuclear periphery. Nucleic Acids Res 18: 513–520

    PubMed  CAS  Google Scholar 

  • Montell C, Fisher EF, Caruthers MH, Berk AJ (1984) Control of adenovirus E1B mRNA synthesis by a shift in the activities of RNA splice sites. Mol Cell Biol 4: 966–972

    PubMed  CAS  Google Scholar 

  • Moore MA, Shenk T (1988) The adenovirus tripartite leader sequence can alter nuclear and cytoplasmic metabolism of a non-adenovirus mRNA within infected cells. Nucleic Acids Res 16: 2247–2262

    PubMed  CAS  Google Scholar 

  • Moore M, Schaack J, Baim SB, Morimoto Rl, Shenk T (1987) Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Mol Cell Biol 7: 4505–4512

    PubMed  CAS  Google Scholar 

  • Moore MJ, Query CC, Sharp PA (1993) Splicing of precursors to mRNAs by the spliceosome. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 303–357

    Google Scholar 

  • Moyne G, Pichard E, Bernhard W (1978) Localization of simian adenovirus 7 (SA 7) transcription and replication in lytic infection. An ultracytochemical and autoradiographical study. J Gen Virol 40: 77–92

    PubMed  CAS  Google Scholar 

  • Nevins JR, Darnell JE Jr (1978) Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15: 1477–1493

    PubMed  CAS  Google Scholar 

  • Nevins JR, Wilson MC (1981) Regulation of adenovirus-2 gene expression at the level of transcriptional termination and RNA processing. Nature 290: 113–118

    PubMed  CAS  Google Scholar 

  • Nevins JR, Ginsberg HS, Blanchard JM, Wilson MC, Darnell JE (1979) Regulation of the primary expression of the early adenovirus transcription units. J Virol 32: 727–733

    PubMed  CAS  Google Scholar 

  • Nordqvist K, Akusjarvi G (1990) Adenovirus early region 4 stimulates mRNA accumulation via 5′ introns. Proc Natl Acad Sci USA 87: 9543–9547

    PubMed  CAS  Google Scholar 

  • Nordqvist K, Ohman K, Akusjarvi G (1994) Human adenovirus encodes two proteins which have opposite effects on accumulation of alternatively spliced mRNAs. Mol Cell Biol 14: 437–445

    PubMed  CAS  Google Scholar 

  • Ohman K, Nordqvist K, Akusjarvi G (1993) Two adenovirus proteins with redundant activities in virus growth facilitates tripartite leader mRNA accumulation. Virology 194: 50–58

    PubMed  CAS  Google Scholar 

  • O’Malley RP, Duncan RF, Hershey JWB, Mathews MB (1989) Modification of protein synthesis initiation factors and the shut-off of host protein synthesis in adenovirus infected cells. Virology 168: 112–118

    PubMed  Google Scholar 

  • Ornelles DA, ShenkT (1991) Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 65: 424–439

    PubMed  CAS  Google Scholar 

  • Perricaudet M, Akusjarvi G, Virtanen A, Pettersson U (1979) Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature 281: 694–696

    PubMed  CAS  Google Scholar 

  • Perricaudet M, Le Moullec JM, Pettersson U (1980) Predicted structure of two adenovirus tumor antigens. Proc Natl Acad Sci USA 77: 3778–3782

    PubMed  CAS  Google Scholar 

  • Pilder S, Leppard K, Logan J, Shenk T (1986a) Functional analysis of the adenovirus E1B 55K polypeptide. Cancer Cells 4: 285–290

    CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986b) The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Popielarz M, Gattoni R, Stevenin J (1993) Contrasted cis-acting effects of downstream 5′ splice sites on the splicing of a retained intron: the adenoviral E1A pre-mRNA model. Nucleic Acids Res 21: 5144–5151

    PubMed  CAS  Google Scholar 

  • Prescott JC, Falck-Pedersen E (1992) Varied poly(A) site efficiency in the adenovirus major late transcription unit. J Biol Chem 267: 8175–8181

    PubMed  CAS  Google Scholar 

  • Reichel PA, Merrick WC, Skiekierka J, Mathews MB (1985) Regulation of a protein synthesis initiation factor by adenovirus virus-associated RNA. Nature 313: 196–200

    PubMed  CAS  Google Scholar 

  • Riley D, Flint SJ (1993) RNA binding properties of a translational activator, the adenovirus L4 100-kilodalton protein. J Virol 67: 3586–3595

    PubMed  CAS  Google Scholar 

  • Roberts RJ, O’Neill K, Yen CT (1984) DNA sequences from the adenovirus 2 genome. J Biol Chem 259: 13968–13975

    PubMed  CAS  Google Scholar 

  • Ross D, Ziff E (1992) Defective synthesis of early region 4 mRNAs during abortive adenovirus infections in monkey cells. J Virol 66: 3110–3117

    PubMed  CAS  Google Scholar 

  • Sandler AB, Ketner G (1989) Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J Virol 63: 624–630

    PubMed  CAS  Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ (1984) Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25 000-dalton protein in productively infected cells. J Virol 49: 692–700

    PubMed  CAS  Google Scholar 

  • Scaria A, Wold WSM (1994) Fine-mapping of sequences that suppress splicing in the E3 complex transcription unit of adenovirus. Virology 205: 406–416

    PubMed  CAS  Google Scholar 

  • Schmitt P, Gattoni R, Keohavong P, Stevenin J (1987) Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell 50: 31–39

    PubMed  CAS  Google Scholar 

  • Schneider RJ, Weinberger C, Shenk T (1984) Adenovirus VA1 RNA facilitates the initiation of translation in virus infected cells. Cell 37: 291–298

    PubMed  CAS  Google Scholar 

  • Schneider RJ, Safer B, Munemitsu S, Samuel CE, Shenk T (1985) Adenovirus VA1 RNA prevents phosphorylation of the eukaryotic initiation factor 2 alpha subunit subsequent to infection. Proc Natl Acad Sci USA 82: 4321–4324

    PubMed  CAS  Google Scholar 

  • Schroder HC, Bachmann M, Diehl-Scifert B, Muller WEG (1987) Transport of mRNA from nucleus to cytoplasm. Prog Nucleic Acid Res Mol Biol 45: 98–142

    Google Scholar 

  • Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single early family of 3′ coterminal mRNAs and five late families. Cell 22: 905–916

    PubMed  CAS  Google Scholar 

  • Smith CWJ, Patton JG, Nadal-Ginard B (1989) Alternative splicing in the control of gene expression. Annu Rev Genet 23: 527–577

    PubMed  CAS  Google Scholar 

  • Soloway PD, Shenk T (1990) The adenovirus type 5 i-leader open reading frame functions in cis to reduce the half-life of L1 mRNAs. J Virol 64: 551–558

    PubMed  CAS  Google Scholar 

  • Stephens C, Harlow E (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30kd and 35kd proteins. EMBO J 6: 2027–2035

    PubMed  CAS  Google Scholar 

  • Svensson C, Akusjarvi G (1986) Defective RNA splicing in the absence of adenovirus-associated RNA I. Proc Natl Acad Sci USA 83: 4690–4694

    PubMed  CAS  Google Scholar 

  • Symington JS, Lucher LA, Brackmann KH, Virtanen A, Pettersson U, Green M (1986) Biosynthesis of adenovirus type 2 i-leader protein. J Virol 57: 848–856

    PubMed  CAS  Google Scholar 

  • Thimmappaya B, Weinberger C, Schneider RJ, Shenk T (1982) Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31: 543–351

    PubMed  CAS  Google Scholar 

  • Thomas GP, Mathews MB (1980) DNA replication and the early to late transition in adenovirus infection. Cell 22: 523–532

    PubMed  CAS  Google Scholar 

  • Tigges MA, Raskas HJ (1984) Splice junctions in adenovirus 2 early region 4 mRNAs: multiple splice sites produce 18 to 24 RNAs. J Virol 50: 106–117

    PubMed  CAS  Google Scholar 

  • Tollefson AE, Scaria A, Saha SK, Wold WSM (1992) The 11 600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. J Virol 66: 3633–3642

    PubMed  CAS  Google Scholar 

  • Ulfendahl PJ, Under S, Kreivi JP, Nordqvist K, Svensson C, Hultberg H, Akusjarvi G (1987) A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBOJ 6: 2037–2044

    CAS  Google Scholar 

  • Van Ormondt H, Maat H, Van Beveren CP (1980) The nucleotide sequence of the transforming region E1 of adenovirus type 5 DNA. Gene 11: 299–309

    PubMed  Google Scholar 

  • Virtanen A, Pettersson U (1985) Organization of early region 1B of human adenovirus type 2: identification of four differentially spliced mRNAs. J Virol 54: 383–391

    PubMed  CAS  Google Scholar 

  • Virtanen A, Gilardi P, Naslund A, LeMoullec JM, Pettersson U, Perricaudet M (1984) mRNAs from human adenovirus 2 early region 4. J Virol 51: 822–831

    PubMed  CAS  Google Scholar 

  • Wahle E, Keller W (1992) The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61: 419–440

    PubMed  CAS  Google Scholar 

  • Walton TH, Moen PT Jr, Fox E, Bodnar JW (1989) Interactions of minute virus of mice and adenovirus with host nucleoli. J Virol 63: 3651–3660

    PubMed  CAS  Google Scholar 

  • Weinberg DH, Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57: 833–838

    PubMed  CAS  Google Scholar 

  • Wickens M (1990) How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem Sci 15: 277–281

    PubMed  CAS  Google Scholar 

  • Williams J, Karger BD, Ho YS, Castiglia CL, Mann T, Flint SJ (1986) The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4: 275–284

    CAS  Google Scholar 

  • Wilson-Gunn SI, Kilpatrick JE, Imperiale MJ (1992) Regulated adenovirus mRNA 3′ end formation in a coupled in vitro transcription/processing system. J Virol 6: 5418–5424

    Google Scholar 

  • Wold WS, Gooding LR (1991) Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    PubMed  CAS  Google Scholar 

  • Yew Y, Kao CC, Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179: 795–805

    PubMed  CAS  Google Scholar 

  • Zamore PD, Patton JG, Green MR (1992) Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355: 609–614

    PubMed  CAS  Google Scholar 

  • Zerivitz K, Kreivi J-P, Akusjarvi G (1992) Evidence for a HeLa cell splicing activity that is necessary for activation of a regulated adenovirus 3′ splice site. Nucleic Acids Res 20: 3955–3961

    PubMed  CAS  Google Scholar 

  • Zhang Y, Schneider RJ (1993) Adenovirus inhibition of cellular protein synthesis and the specific translation of late viral mRNAs. Semin Virol 4: 229–236

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imperiale, M.J., Akusjnärvi, G., Leppard, K.N. (1995). Post-transcriptional Control of Adenovirus Gene Expression. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses II. Current Topics in Microbiology and Immunology, vol 199/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79499-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79499-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79501-5

  • Online ISBN: 978-3-642-79499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics