Skip to main content

The Role of the La Autoantigen in Internal Initiation

  • Chapter
Cap-Independent Translation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 203))

Abstract

The picornavirus family is widespread in nature and these viruses replicate in a wide variety of hosts and tissues (reviewed by Rueckert 1990). There are five genera of picornaviruses, these are: Rhinovirus, Enterovirus (includes poliovirus), Cardiovirus (includes encephalomyocarditis virus (EMCV), Aphthovirus (foot-and-mouth disease virus (FMDV) and Hepatovirus. In each case the viral genomes consist of a single-stranded, positive sense, RNA molecule of between 7.4 and kb. The genome is linked to a viral encoded peptide, VPg, at its 5’terminal but most of the RNA within an infected cell lacks this feature and simply has a terminal phosphate group. The RNA acts as a mRNA but also has to act as the template for negative strand RNA synthesis to allow RNA replication and the production of positive sense RNA. Many of the picornaviruses cause a dramatic alteration in the protein synthetic profile of infected cells. This is a result of new synthesis of viral proteins and also the inhibition of host protein synthesis. The enteroviruses, rhinoviruses and aphthoviruses inhibit host cell protein synthesis as a result of the cleavage of the p220 component of the cap-binding complex (el F-4F) (Etchison et al. 1982; Devaney et al. 1988) and possibly by other uncharacterized mechanisms. The cardioviruses also inhibit host protein synthesis but do not induce p220 cleavage (Mosenkis etal. 1985). The viral protein synthesis is cap-independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belsham GJ (1992) Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J 11: 1105–1110

    PubMed  CAS  Google Scholar 

  • Belsham GJ, Brangwyn JK (1990) A region of the 5’ noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translation control. J Virol 64: 5389–5395

    PubMed  CAS  Google Scholar 

  • Borman AM, Jackson RJ (1992) Initiation of translation of human rhinovirus RNA: mapping the internal ribosome entry site. Virology 188: 685–696

    Article  PubMed  CAS  Google Scholar 

  • Borman A, Howell MT, Patton JG, Jackson RJ (1993) The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J Gen Virol 174: 1775–1788

    Article  Google Scholar 

  • Brown BA, Ehrenfeld E (1979) Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97: 396–405

    Article  PubMed  CAS  Google Scholar 

  • Brown EA, Day SP, Jansen RW, Lemon SM (1991) The 5’ nontranslated region of hepatitis A virus RNA: secondary structure and elements required for translation in vitro. J Virol 65: 5828–5838

    PubMed  CAS  Google Scholar 

  • Del Angel RM, Papavassiliou Ag, Fernandez-Tomas C, Silverstein SJ, Racaniello VR (1989) Cell proteins bind to multiple sites within the 5’ untranslated region of poliovirus RNA. Proc Natl Acad Sci USA 86: 8299–8303

    Article  PubMed  Google Scholar 

  • Devaney MA, Vakharia VN, Lloyd RE, Ehrenfeld E, Grubman MJ (1988) Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap binding complex. J Virol 62: 4407–4409

    PubMed  CAS  Google Scholar 

  • Dorner AJ, Semler BL, Jackson RJ, Hanecak R, Duprey E, Wimmer E (1984) In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50: 507–514

    PubMed  CAS  Google Scholar 

  • Drew J, Belsham GJ (1994) trans Complementation by RNA of defective foot-and-mouth disease virus internal ribosome entry site elements. J Virol 68: 697–703

    PubMed  CAS  Google Scholar 

  • Duke GM, Hoffman M, Palmenberg AC (1992) Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J Virol 66: 1602–1609

    PubMed  CAS  Google Scholar 

  • Earle JAP, Skuce RA, Fleming CS, Hoey EM, Martin SJ (1988) The complete nucleotide sequence of a bovine enterovirus. J Gen Virol 69: 253–263

    Article  PubMed  CAS  Google Scholar 

  • Etchison D, Milburn S, Edery I, Sonenberg N, Hershey JWB (1982) Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000 dalton polypeptide associated with eukaryotic initiation factor 3 and a capbinding complex. J Biol Chem 257: 14806–14810

    PubMed  CAS  Google Scholar 

  • Futterer J, Kiss-Laszlo Z, Hohn T (1993) Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell 73: 789–802

    Article  PubMed  CAS  Google Scholar 

  • Gebhard JR, Ehrenfeld E (1992) Specific interactions of HeLa cell proteins with proposed translation domains of the poliovirus 5’ noncoding region. J Virol 66: 3101–3109

    PubMed  CAS  Google Scholar 

  • Gottlieb E, Steitz JA (1989) Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J 8: 851–861

    PubMed  CAS  Google Scholar 

  • Habets WJ, den Brok JH, Boerbooms AMT, van de putte LBA, van Venrooij WJ (1983) Characterization of the SS-B (La) antigen in adenovirus-infected and uninfected HeLa cells. EMBO J 2: 1625–1631

    PubMed  CAS  Google Scholar 

  • Haller AA, Nguyen JHC, Semler BL (1993) Minimum internal ribosome entry site required for poliovirus infectivity. J Virol 67: 7461–7471

    PubMed  CAS  Google Scholar 

  • Hellen CUT, Witherell GW, Schmid M, Shin SH, Pestova TV, Gil A, Wimmer E (1993) A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci USA 90: 7642–7646

    Article  PubMed  CAS  Google Scholar 

  • Iizuka N, Kohara M, Hagino Yamagishi K, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Construction of less neurovirulent polioviruses by introducing deletions into the 5’ noncoding region sequence of the genome. J Virol 63: 5354–5363

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Howell MT, Kaminski A (1990) The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci 15: 477–483

    Article  PubMed  Google Scholar 

  • Jang S-K, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA binding protein. Genes Dev 4: 1560–1572

    Article  PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5’ non-translated region of encephalomycarditis virus RNA directs internal entry or ribosomes during in vitro translation. J Virol 62: 2636–2643

    PubMed  CAS  Google Scholar 

  • Jang SK, Davies MV, Kaufman RJ, Wimmer E (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5’ nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol 63: 1651–1660

    PubMed  CAS  Google Scholar 

  • Kaminski A, Belsham GJ, Jackson RJ (1994) Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J 13: 1673–1681

    PubMed  CAS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Kuge S, Kawamura N, Nomoto A (1989) Genetic variation occurring on the genome of an in vitro insertion mutant poliovirus type 1. J Virol 63: 1069–1075

    PubMed  CAS  Google Scholar 

  • Kuhn R, Luz N, Beck E (1990) Functional analysis of the internal initiation site of foot-and-mouth disease virus. J Virol 64: 4625–631

    PubMed  CAS  Google Scholar 

  • La Monica N, Racaniello VR (1989) Differences in replication of attenuated and neurovirulent polio- viruses in human neuroblastoma cell line SH-SY5Y. J Virol 63: 2357–2360

    PubMed  CAS  Google Scholar 

  • Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5’ leader of a cellular mRNA. Nature 353: 90–94

    Article  PubMed  CAS  Google Scholar 

  • Meerovitch K, Sonenberg N (1993) Internal initiation of picornavirus RNA translation. Semin Virol 4: 217–227

    Article  CAS  Google Scholar 

  • Meerovitch K, Pelletier J, Sonenberg N (1989) A cellular protein that binds to the 5’-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev 3: 1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EKL, Agol VI, Keene JD, Sonenberg N (1993) La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67: 3798–3807

    PubMed  CAS  Google Scholar 

  • Molla A, Paul AV, Wimmer E (1991) Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Mosenkis J, Daniels-McQueen S, Janovec S, Duncan R, Hershey JWB, Grifo JA, Merrick WC, Thach RE (1985) Shutoff of host translation by encephalomyocarditis virus infection does not involve cleavage of the eukaryotic initiation factor 4F polypeptide that accompanies poliovirus infection. J Virol 54: 643–645

    PubMed  CAS  Google Scholar 

  • Najita L, Sarnow P (1990) Oxidation-reduction sensitive interaction of a cellular 50 kDa protein with an RNA hairpin in the 5’ noncoding region of the poliovirus genome. Proc Natl Acad Sci USA 87: 5846–5850

    Article  PubMed  CAS  Google Scholar 

  • Nicholson R, Pelletier J, Le S-Y, Sonenberg N (1991) Structural and functional analysis of the ribosome landing pad of poliovirus: in vivo translation studies. J Virol 65: 5886–5894

    PubMed  CAS  Google Scholar 

  • Nomoto A, Kohara M, Kuge S, Kawamura N, Arita M, Kamatsu T, Abe S, Semler BL, Wimmer E, Itoh H (1987) Study on virulence of poliovirus type I using in vitro modified viruses. In: Brinton MA, Rueckert RR (eds) Positive strand RNA viruses. Liss, New York, pp 437–452

    Google Scholar 

  • Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N (1994) Dominant negative mutants of elF-4A define a critical role for elF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13: 1205–1215

    PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320–325

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1989) Internal binding of eukaryotic ribosomes on poliovirus RNA: translation in HeLa cell extracts. J Virol 63: 441–444

    PubMed  CAS  Google Scholar 

  • Pelletier J, Kaplan G, Racaniello VR, Sonenberg N (1988a) Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5’ noncoding region. Mol Cell Biol 8: 1103–1112

    PubMed  CAS  Google Scholar 

  • Pelletier J, Flynn ME, Kaplan G, Racaniello VR, Sonenberg N (1988b) Mutational analysis of upstream AUG codons of poliovirus RNA. J Virol 62: 4486–4492

    PubMed  CAS  Google Scholar 

  • Percy N, Belsham GJ, Brangwyn JK, Sullivan M, Stone DM, Almond JW (1992) Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5‘noncoding region of the genome involved in internal initiation of protein synthesis. J Virol 66: 1695–1701.

    PubMed  CAS  Google Scholar 

  • Pestova TV, Hellen CUT, Wimmer E (1991) Translation of poliovirus RNA: role of an essential cis- acting oligopyrimidine element within the 5’ nontranslated region and involvement of a cellular 57- kilodalton protein. J Virol 65: 6194–6204

    PubMed  CAS  Google Scholar 

  • Phillips BA, Emmert A (1986) Modulation of the expression of poliovirus proteins in reticulocyte lysates. Virology 148: 255–267

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Blinov VM, Chernov BK, Dmitrieva, Agol VI (1989) Conservation of the secondary structure elements of the 5’-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res 17: 5701–5711

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Gmyl AP, Maslova SV, Svitkin YV, Sinyakov AN, Agol VI (1992) Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Ren R, Moss EG, Racaniello VR (1991) Identification of two determinants that attenuate vaccine- related type-2 poliovirus. J Virol 65: 1377–1382

    PubMed  CAS  Google Scholar 

  • Rueckert RR (1990) Picornaviridae and their replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, Virology, 2nd edn. Raven, New York, pp 507–548

    Google Scholar 

  • Skinner MA, Racaniello VR, Dunn G, Cooper J, Minor PD, Almond JW (1989) New model for the secondary structure of the 5’ noncoding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol 207: 379–392

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Almond JW, Brangwyn JK, Belsham GJ (1993) trans Complementation of cap-independent translation directed by poliovirus 5’ noncoding region deletion mutants: evidence for RNA-RNA interactions. J Virol 67: 6215–6223

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Maslova SV, Agol VI (1985) The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies, Virology 147: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Svitkin YV, Pestova TV, Maslova SV, Agol VI (1988) Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166: 394–404

    Article  PubMed  CAS  Google Scholar 

  • Svitkin YV, Cammack N, Minor PD, Almond JW (1990) Translation deficiency of the Sabin type 3 poliovaccine genome: association with the attenuating mutation C472→U. Virology 175: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Svitkin YV, Meerovitch K, Lee HS, Dholakia JN, Kenan DJ, Agol VI, Sonenberg N (1994) Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translation in vitro. J Virol 68: 1544–1550

    PubMed  CAS  Google Scholar 

  • Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44: 93–151

    Article  PubMed  CAS  Google Scholar 

  • Westrop GD, Evans DMA, Minor PD, Magrath D, Schild GC, Almond JW (1987) Investigation of the molecular basis of attenuation in the Sabin type 3 vaccine using novel recombinant polioviruses constructed from infectious cDNA. In: Rowlands DJ, Mayo MA, Mahy BWJ (eds) The molecular biology of the positive strand RNA viruses. Liss, New York, pp 53–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belsham, G.J., Sonenberg, N., Svitkin, Y.V. (1995). The Role of the La Autoantigen in Internal Initiation. In: Sarnow, P. (eds) Cap-Independent Translation. Current Topics in Microbiology and Immunology, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79663-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79663-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79665-4

  • Online ISBN: 978-3-642-79663-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics