Skip to main content

Central Cardiovascular Function in Amphibians: Qualitative Influences of Phylogeny, Ontogeny, and Season

  • Chapter
Mechanisms of Systemic Regulation

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 21))

Abstract

The central cardiovascular function of amphibians has been studied in detail for many decades. Some investigators have been motivated primarily by the search for supposedly simple models which may provide a greater understanding of the circulations of higher vertebrates. Others were interested in physiological problems presented by the cardiovascular systems of amphibians, because these vertebrates are of interest in their own right, as a unique, specialized and highly successful group (see Feder 1992). Whatever the rationale for studying the amphibian cardiovascular system, investigators routinely experience its paradoxical nature. In some respects, the circulation of various amphibians represents a relatively simple system for convective transport of blood (e.g. lack of anatomical division of the ventricle). Yet, in other aspects (e.g. the control of cardiac output distribution), the amphibian circulation rivals that of any other vertebrate class in terms of flexibility and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barcroft J, Izquierdo JJ (1931) The relation of temperature to the pulse rate of the frog. J Physiol Lond 71: 145–155

    PubMed  CAS  Google Scholar 

  • Boutilier RG (1989) Diving physiology: amphibians. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Dekker, New York, pp 677–695

    Google Scholar 

  • Boutilier RG, Glass ML, Heisler N (1986) The relative distribution of pulmocutaneous blood flow in Rana catesbeiana: effects of pulmonary or cutaneous hypoxia. J Exp Biol 126: 33–39

    PubMed  CAS  Google Scholar 

  • Bride M (1975) Etablissement de l’innervation dans le coeur du têtard de Xénope et ses répercussions sur le fonctionnement de l’organe. CR Soc Biol 169: 1265–1271

    CAS  Google Scholar 

  • Burggren WW (1988) Role of the central circulation in regulation of cutaneous gas exchange. Am Zool 28: 985–998

    Google Scholar 

  • Burggren WW (1989) Lung structure and function: amphibians. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Dekker, New York, pp 153–192

    Google Scholar 

  • Burggren WW (1991) Does comparative respiratory physiology have a role in evolutionary biology (and vice versa)? In: Woakes AJ, Grieshaber MK, Bridges CR (eds) Physiological strategies for gas exchange and metabolism. Cambridge Univ Press, Cambridge, pp 1–13

    Google Scholar 

  • Burggren WW (1992) The importance of an ontogenetic perspective in physiological studies: amphibian cardiology as a case study. In: Weber R, Wood SC, Millard R, Hargens A (eds) Strategies of physiological adaptation, respiration, circulation and metabolism. Dekker, New York, pp 235–253

    Google Scholar 

  • Burggren WW (1993) Respiratory metamorphosis during the water-to-land transitions in developing vertebrates and invertebrates. In: Bicudo E, Glass M, Abé A (eds) The vertebrate gas transport cascade: adaptations to environment and mode of life. CRC Press, Boca Raton, pp 23–34

    Google Scholar 

  • Burggren WW, Bemis WE (1990) Studying physiological evolution: paradigms and pitfalls. In: Nitecki MH (ed) Evolutionary innovations. Univ Chicago Press, Chicago, pp 191–228

    Google Scholar 

  • Burggren WW, Doyle ME (1986a) Ontogeny of heart rate regulation in the bullfrog, Rana catesbeiana. Am J Physiol 251: R231–239

    CAS  Google Scholar 

  • Burggren WW, Doyle ME (1986b) The action of acetylcholine upon heart rate changes markedly with development in bullfrogs. J Exp Zool 240: 137–140

    Article  CAS  Google Scholar 

  • Burggren WW, Infantino RL Jr. (1994) The respiratory transition from water to air breathing during amphibian metamorphosis. Amer Zool 34: 238–246

    Google Scholar 

  • Burggren WW, Just JJ (1992) Developmental changes in amphibian physiological systems. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. Univ Chicago Press, Chicago, pp 467–530

    Google Scholar 

  • Burggren WW, Pinder AW (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol 53: 107–135

    Article  PubMed  CAS  Google Scholar 

  • Burggren WW, Feder ME, Pinder AW (1983) Temperature and the balance between aerial and aquatic respiration in larvae of Rana catesbeiana. Physiol Zool 56: 263–273

    Google Scholar 

  • Burggren WW, Infantino RL Jr, Townsend DS (1990) Developmental changes in cardiac and metabolic physiology of the direct-developing tropical frog Eleutherodactylus coqui. J Exp Biol 152: 129–147

    Google Scholar 

  • Burggren WW, Bicudo JE, Glass ML, Abe AS (1992) Development of blood pressure and cardiac reflexes in the frog Pseudis paradoxsus. Am J Physiol 263: R602 - R608

    PubMed  CAS  Google Scholar 

  • Carter G (1933) On the control of the level of activity of the animal body. J Exp Biol 10: 256–273

    CAS  Google Scholar 

  • Chiu KW, Chu JY (1989) Temperature and adrenoceptors in the frog heart. Comp Biochem Physiol 94C; 149–157

    CAS  Google Scholar 

  • Clark EB (1991) Functional characteristics of the embryonic circulation. In: Feinberg RN, Sherer GK, Auerbach R (eds) The develpoment of the vascular system. Karger, Basel, pp 125–135

    Google Scholar 

  • Dunlap DG (1980) Comparative effects of themal acclimation and season on metabolic compensation to temperature in the hylid frogs, Pseudacrs triseriataand Acris crepitans. Comp Biochem Physiol 66A: 243–249

    Article  Google Scholar 

  • Feder ME (1976) Lunglessness, body size and metabolic rate in salamanders. Physiol Zool 49: 398–406

    Google Scholar 

  • Feder ME (1982) Effects of latitude, season, elevation, and microhabitat on field body temperatures of neotropical and temperate zone salamanders. Ecology 63: 1657–1664

    Article  Google Scholar 

  • Feder ME (1992) A perspective of environmental physiology of the amphibians. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. Univ Chicago Press, Chicago, pp 1–6

    Google Scholar 

  • Feder ME, Burggren WW (1985) Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol Rev 60: 1–45

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Burggren WW (eds) (1992) Environmental physiology of the Amphibia. Univ Chicago Press, Chicago

    Google Scholar 

  • Fromm PO, Johnson RE (1955) The respiratory metabolism of frogs as related to season. J Cell Comp Physiol 45: 343–359

    Article  CAS  Google Scholar 

  • Gans C (1970) Respiration in early tetrapods—the frog is a red herring. Evolution 24: 740–751

    Article  Google Scholar 

  • Garland T Jr, Adolph SC (1994) Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol Zool 67: 797–828

    Google Scholar 

  • Harlow HJ (1977) Seasonal oxygen metabolism and cutaneous osmoregulation in the California newt, Taricha torosa. Physiol Zool 50 (3): 231–236

    CAS  Google Scholar 

  • Harri MNE, Talo A (1975a) Effect of season and temperature acclimation on the heart rate-temperature relationship in the isolated frog’s heart (Rana temporaria). Comp Biochem Physiol 52A: 409–412

    Article  Google Scholar 

  • Harri MNE, Talo A (1975b) Effect of season and temperature acclimation on the heart rate-temperature relationship in the frog, Rana temporaria. Comp Biochem Physiol 52A: 467–472

    Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford Univ Press, Oxford

    Google Scholar 

  • Heath AG (1980) Cardiac responses of larval and adult tiger salamanders to submergence and emergence. Comp Biochem Physiol 65A: 439–444

    Article  Google Scholar 

  • Herman CA (1992) Endocrinology. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. Univ Chicago Press, Chicago pp 40–54

    Google Scholar 

  • Holzapfel RH (1937) The cyclic character of hibernation in frogs. Q Rev Biol 12: 65–84

    Article  Google Scholar 

  • Hou P-CL (1992) Devlopment of haemodynamic regulation in larvae of the African clawed toad, Xenopus laevis. PhD Diss, Univ Massachusetts, Amherst

    Google Scholar 

  • Hou P-CL, Burggren WW (1989) Interaction of allometry and development in the mouse Mus musculus; heart rate and hematology. Respir Physiol 78: 265–280

    Article  PubMed  CAS  Google Scholar 

  • Hou P-CL, Burggren WW (1995a) Ventricular and central arterial blood pressures and heart rate during development in early larvae of the anuran amphibian Xenopus laevis. Am J Physiol (In Press)

    Google Scholar 

  • Hou P-CL, Burggren WW (1995b) Cardiac output and peripheral resistance during develop- ment in early larvae of the anuran amphibian Xenopus laevis. Am J Physiol (In Press)

    Google Scholar 

  • Huey RB (1987) Phylogeny, history and the comparative method. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge Univ Press, New York, pp 76–98

    Google Scholar 

  • Iriuchijima J (1959) Sympathetic and vagal discharges in the cardiac nerve of the road. Tohoku J Exp Med 71: 109–119

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky H-D (1960) Ãœber die hormonale Beeinflussung der Temperaturadaptation beim Grasfrosch (Rana temporaria). Z Vgl Physiol 43: 392–410

    Article  Google Scholar 

  • Johansen K, Burggren WW (1980) Cardiovascular function in the lower vertebrates. In: Bourne GH (ed) Hearts and heart-like organs. Academic Press, New York, pp 61–117

    Google Scholar 

  • Jones DR (1968) Specific and seasonal variations in development of diving bradycardia in anuran Amphibia. Comp Biochem Physiol 25: 821–834

    Article  PubMed  CAS  Google Scholar 

  • Kimmel PB (1990) The ontogeny of cardiovascular regulatory mechanisms in the bullfrog (Rana catesbeiana). PhD Diss, Univ Massachusetts, Amherst

    Google Scholar 

  • Lagerspetz KYH, Harri MNE, Okslahti R (1974) The role of the thyroid in the temperature acclimation of the oxidative metabolism in the frog, Rana temporaria. Gen Comp Endocrinol 22: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Lund GF, Dingle H (1968) Seasonal temperature influence on vagal control of diving bradycardia in the frog (Rana pipiens). J Exp Biol 48: 265–277

    PubMed  CAS  Google Scholar 

  • Malvin GM (1985) Cardiovascular shunting during amphibian metamorphosis In Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic, ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 163–172

    Google Scholar 

  • Malvin GM (1989) Gill structure and function: amphibian larvae. In: Wood SC (ed) Comparative pulmonary physiology: current concepts. Dekker, New York, pp 148–151

    Google Scholar 

  • Mendes EG (1945) Contribuicâo para a fisiologia dos sistemas respiratorio e circulatório de Siphonops annulatus(Amphibia- Gymnophiona). Bol Fac Filos Cienc Let Univ Sa Paulo Ser Zool 5: 283–304

    Google Scholar 

  • Miller LC, Mizell S (1972a) Seasonal variation in heart rate response to core temperature changes. Comp Biochem Physiol 42A: 733–779

    Google Scholar 

  • Miller LC, Mizell S (1972b) Seasonal variation in heart-rate-core temperature relationship in Rana pipiens: the role of the autonomic nervous system. Comp Gen Pharmacol 3: 434–442

    Article  CAS  Google Scholar 

  • Owen R (1834) On the structure of the heart in the perennibranchiate Batrachia. Trans Zool Soc Lond 1: 213–220

    Article  Google Scholar 

  • Pelster B, Burggren WW (1991) Central arterial haemodynamics in larval bullfrogs (Rana catesbeiana): developmental and seasonal influences. Am J Physiol 260: R240 - R246

    PubMed  CAS  Google Scholar 

  • Pelster B, Burggren WW, Petrou S, Wahlqvist I (1993) Developmental changes in the acetylcholine influence on heart muscle of Rana catesbeiana: in situ and in vitro effects: J Exp Zool 267: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Putnam JL (1975) Septation in the ventricle of the heart of Siren intermedia. Copeia 1975: 773–774

    Article  Google Scholar 

  • Putnam JL, Dunn JF (1978) Septation in the ventricle of the heart of Necturus maculosus. Herpetologica 34: 292–297

    Google Scholar 

  • Putnam JL, Parkerson JB (1985) Anatomy of the heart of the Amphibia. II. Cryptobranchus alleganiensis. Herpetologica 41: 287–298

    Google Scholar 

  • Sawaya P (1940) Sôbre o veneo das glandulas cutaneas, a secreçâo e o coraçâo de Siphonops annulatus. Bol Fac Filos Cienc Let Univ Sao Paulo Ser Zool 4: 206–270

    Google Scholar 

  • Shelton G (1970) The effect of lung ventilation on blood flow to the lungs and body of the amphibian, Xenopus laevis. Respir Physiol 9: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Shelton G (1976) Gas exchange, pulmonary blood supply, and the partially divided amphibian heart. In: Spencer Davis P (ed) Perspective in experimental biology. Pergamon Press, Oxford, pp 247–259

    Google Scholar 

  • Shelton G (1985) Functional and evolution significance of cardiovascular shunts in the Amphibia. In: Johansen K, Burggren WW (eds) Cardiovascular shunts: phylogenetic ontogenetic and clinical aspects. Munksgaard, Copenhagen, pp 100–116

    Google Scholar 

  • Smith CL (1951) The temperature-pulse rate curve of the isolated frog’s heart (Rana temporaria). J Exp Biol 28: 141–164

    PubMed  CAS  Google Scholar 

  • Stahl WR (1967) Scaling of respiratory variable in mammals. J Appl Physiol 22: 453–460

    PubMed  CAS  Google Scholar 

  • Stier TJB, Bock HC (1966) Seasonal changes of heart rate-temperature relationships in toads. Proc Soc Exp Biol Med 123: 149–151

    PubMed  CAS  Google Scholar 

  • Tazawa H, Mochizuki M, Piiper J (1979) Respiratory gas transport by the incompletely separated double circulation in the bullfrog, Rana catesbeiana. Respir Physiol 36: 77–95

    Article  PubMed  CAS  Google Scholar 

  • Toews D, MacIntyre DT (1978) Respiration and circulation in an apodan amphibian. Can J Zool 56: 998–1004

    Article  CAS  Google Scholar 

  • Toews D, Shelton G and Randall DJ (1971) Gas tensions in the lungs and major blood vessels of the urodele amphibian, Amphiuma tridactylum. J Exp Biol 55: 47–61

    Google Scholar 

  • Wassersug RJ, Paul RD, Feder ME (1981). Cardio-respiratory synchrony in anuran larvae (Xenopus laevis, Pachymedusa dacnicolorand Rana berlandieri). Comp Biochem Physiol 70A: 329–334

    Article  Google Scholar 

  • West NH, Burggren WW (1983) Reflex interactions between aerial and aquatic gas exchange organs in the larval bullfrog. Am J Physiol 244 (6): R770 - R777

    PubMed  CAS  Google Scholar 

  • West NH, Burggren WW (1984) Factors influencing pulmonary and cutaneous arterial blood flow in the toad, Bufo marinus. Am J Physiol 247: R884 - R894

    PubMed  CAS  Google Scholar 

  • West NH, Van Vliet BN (1992) Sensory mechanisms regulating the respiratory and cardiovascular systems. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibian: Univ Chicago Press, Chicago, pp 151–182

    Google Scholar 

  • Wolmuth LP, Crawshaw Ll (1988) The effect of development and season on temperature selection in bullfrog tadpoles. Physiol Zool 61: 461–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burggren, W.W. (1995). Central Cardiovascular Function in Amphibians: Qualitative Influences of Phylogeny, Ontogeny, and Season. In: Heisler, N. (eds) Mechanisms of Systemic Regulation. Advances in Comparative and Environmental Physiology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79666-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79666-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79668-5

  • Online ISBN: 978-3-642-79666-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics