Skip to main content

Advective Transport of Interacting Solutes: The Chromatographic Model

  • Chapter
Sediments and Toxic Substances

Part of the book series: Environmental Science ((ENVSCIENCE))

  • 207 Accesses

Abstract

In the past decade affordable computers have become capable of calculating transport of several chemically and biologically interacting components in porous media. Examples of such components are natural ions, ligands, nutrients and contaminants. Many transport codes have been written, as is evident from reviews (e.g. Kirkner and Reeves 1988; Reeves and Kirkner 1988; Kinzelbach et al. 1989). Numerical difficulties and long computation times have been addressed in various ways, depending on the choice of the geochemical problem. Subroutines, e.g. PHREEQE, MINEQL or other members of the MINEQL family, such as MINTEQ, GEOCHEM or HYDROQL, are called at each time step to establish chemical equilibrium in all cells of the spatial discretisation (nodes; Walsh et al. 1984; Cederberg et al. 1985; Novak et al. 1988; Berninger et al. 1991). When applied to the nodes sequentially, these subroutines need more than 90% of the computation time. Soon excessive time is spent in these subroutines when the number of nodes is increased, unless the computer code has been vectorized, thus being able to establish chemical equilibrium in all nodes at once (Vogt 1990). Lichtner (1992) and Ortoleva and co-workers (1987) went in another direction, avoiding super- or mini-supercomputers by introducing very potent approximations in the transport equations for the case of mineral precipitation and dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bear J (1979) Hydraulics of groundwater. McGraw Hill Book Co, New York

    Google Scholar 

  • Berninger JA, Whitley RD, Zhang X, Wang N-H L (1991) A versatile model for simulation of reaction and nonequilibrium dynamics in multicomponent fixed-bed adsorption processes. Computers Chem Engng 15(11):749–768

    Article  Google Scholar 

  • Charbeneau RJ (1988) Multicomponent exchange and subsurface solute transport: characteristics, coherence, and the Riemann problem. Water Resour Res 24:57–64

    Article  Google Scholar 

  • Cederberg GA, Street RL, Leckie JO (1985) A groundwater mass transport and equilibrium chemistry model for multicomponent systems. Water Resour Res 21:1095–1104

    Article  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. John Wiley, New York

    Google Scholar 

  • Glueckauf E (1955) Ion exchange and its applications. Soc. of Chemical Industry 34, London

    Google Scholar 

  • Harwell J (1992) Fate of organic pollutants in immiscible non-aqueous solvents, In: Petruzzelli D, Helfferich FG (eds) Migration and fate of pollutants in soils and subsoils. Proceedings of the NATO-Advanced Study Institute Summer School, Aquafredda di Maratea, Italy, May 24-June 6

    Google Scholar 

  • Helfferich F (1967) Multicomponent ion-exchange in fixed beds. Ind Eng Chem Fundam 6:362–364

    Article  Google Scholar 

  • Helfferich FG (1992) Multicomponent wave propapation: the coherence principle, In: Petruzzelli D, Helfferich FG (eds) Migration and fate of pollutants in soils and subsoils. Proceedings of the NATO-Advanced Study Institute Summer School, Aquafredda di Maratea, Italy, May 24-June 6

    Google Scholar 

  • Helfferich FG, Bennett BJ (1984) Weak electrolytes, polybasic acids, and buffers in anion exchange columns, I: Sodium acetate and sodium carbonate systems. Reactive polymers 3:51–66.

    Google Scholar 

  • Helfferich FG, Bennett BJ (1984) Weak electrolytes, polybasic acids, and buffers in anion exchange columns, II: Sodium acetate chloride system, solvent extraction and ion exchange 2:1151–1184

    Google Scholar 

  • Helfferich F, Klein G (1970) Multicomponent chromatography — theory of interference. Marcel Dekker, New York

    Google Scholar 

  • Hunt JR, Sitar N, Udell KS (1988) Nonaqueous phase liquid transport and cleanup, 1: Analysis of mechanisms. Water Resour Res 24:1247–1258

    Article  Google Scholar 

  • Hwang Y-L, Helfferich FG, Leu R-J (1988) Multicomponent equilibrium theory for ion-exchange columns involving reactions. AIChE J 34:1615–1626

    Article  Google Scholar 

  • International AVS Center, North Carolina Supercomputing Center, PO Box 12889, 3021 Cornwallis Road, Research Triangle Park, North Carolina, NC 27709, telnet: avsncscorg

    Google Scholar 

  • Kinzelbach W, Schäfer W, Herzer J (1989) Numerical modeling of nitrate transport in a natural aquifer. In: Kobus H, Kinzelbach W (eds) Contaminant transport in groundwater. Balkema, Rotterdam, pp 191–198

    Google Scholar 

  • Kirkner DJ, Reeves H (1988) Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: the effect of the chemistry on the choice of numerical algorithm, Part 1: Theory. Water Resour Res 24:1719–1729

    Article  Google Scholar 

  • Lake LW, Helfferich F (1978) Cation exchange in chemical flooding, 2: The effect of dispersion, cation exchange, and polymer/surfactant adsorption on chemical flood environment. Soc Pet Eng J 18:435–444

    Google Scholar 

  • Lax PD (1957) Hyperbolic systems of conservation laws II. Comm Pure Appl Math 10:537–566

    Article  Google Scholar 

  • Lax PD (1973) Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society of Industrial and Applied Mathematics, Philadelphia, PA 19103

    Book  Google Scholar 

  • Lichtner PC (1992) Time-space continuum description of fluid/rock interaction in permeable media. Water Resour Res 28:3135–3155

    Article  Google Scholar 

  • Liu T-P (1987) Hyperbolic conservation laws with relaxation. Commun Math Phys 108:153–175

    Article  Google Scholar 

  • Novak CF, Schechter RS, Lake LW (1988) Rule-based mineral sequences in geochemical flow processes. AIChE Journal 34:1607–1614

    Article  Google Scholar 

  • Ortoleva P, Merino E, Moore G, Chadam J (1987) Geochemical self-organization, I: Reaction-transport feedbacks and modeling approach. Am J Sci 287:979–1007

    Article  Google Scholar 

  • Pfann W (1958) Zone melting. John Wiley, New York

    Google Scholar 

  • Reeves H, Kirkner DJ (1988) Multicomponent mass transport with homogeneous and heterogeneous chemical reactions: the effect of the chemistry on the choice of numerical algorithm, part II: Numerical results. Water Resour Res 24:1730–1739

    Article  Google Scholar 

  • Rhee H-K, Aris R, Amundson NR (1989) First-order partial differential equations, Vol. II: Theory and application of hyperbolic systems of quasilinear equations. Prentice Hall, Englewood Cliffs, NJ 07632

    Google Scholar 

  • Schweich D, Sardin M, Jauzein M (1993) Properties of concentration waves in presence of nonlinear sorption, precipitation/dissolution, and homogeneous reactions, 1: Fundamentals, 2: Illustrative examples. Water Resour Res 29:723–741

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry (2nd ed). John Wiley

    Google Scholar 

  • Temple B (1983) Systems of conservation laws with invariant submanifolds. Trans Amer Math Soc 2:781-795

    Article  Google Scholar 

  • Vogt M (1990) Ein vektorrechnerorientiertes Verfahren zur Berechnung von groBraumigen Multikomponenten-Transport-Reaktions-Mechanismen im Grundwasserleiter. Dissertation, University of Karlsruhe, VDI Verlag

    Google Scholar 

  • Walsh MP, Bryant SL, Schechter RS, Lake LW (1984) Precipitation and dissolution of solids attending flow through porous media. AIChE J 30:317–328

    Article  Google Scholar 

  • Wolfram Research Inc (1992) Mathematica®, Version 2.2, Wolfram Research Inc, 100 Trade Center Drive, Champaign, Illinois, IL 61820–7237, USA E-Mail: info@wricom

    Google Scholar 

  • Zee SEATM van der (1990) Analytical traveling wave solution for transport with nonlinear nonequilibrium adsorption. Water Resour Res 26:2563–2577

    Google Scholar 

  • Zielke C (1993) Transport von spezifisch adsorbierenden Schwermetall-Kationen: Anwendung eines chromatographischen Modells zur Beschreibung and Interpretation von Fronten in binaren Systemen. Diplomarbeit, Technische Universitat HamburgHarburg, Arbeitsbereich Umweltschutztechnik

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruber, J. (1996). Advective Transport of Interacting Solutes: The Chromatographic Model. In: Calmano, W., Förstner, U. (eds) Sediments and Toxic Substances. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79890-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79890-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79892-4

  • Online ISBN: 978-3-642-79890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics