Skip to main content

Strategies to minimize Alveolar Stretch Injury during Mechanical Ventilation

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1996))

Abstract

The potential for positive pressure breaths to injure the lungs has long been appreciated. The best known form of injury occurs when positive pressure breaths grossly overinflate the lungs and result in pneumothorax, pneumomediastinum, subcutaneous emphysema, and other forms of “volutrauma” or “barotrauma” [1–4]. The mechanism for this type of injury is thought to be actual alveolar rupture into the perivascular space with subsequent dissection of air into the mediastinum, pleura and other locations [3–5]. The risk for alveolar overdistension and rupture becomes clinically significant when transalveolar pressures exceed the normal maximum and approach 50–60 cm H2O (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACCP Consensus Group (1993) Mechanical ventilation. Chest 104: 1833–1859

    Article  Google Scholar 

  2. American Association for Respiratory Care (1992) Consensus on essentials of mechanical ventilation. Respir Care 37: 1000–1009

    Google Scholar 

  3. Samuelson WM, Fulkerson WF (1991) Barotrauma in mechanical ventilation. Prob Respir Care 4: 52–67

    Google Scholar 

  4. Steier M, Ching N, Roberts E, et al (1974) Pneumothorax complicating continuous ventilator support. J Thorac Cardiovasc Surg 67: 17–23

    PubMed  CAS  Google Scholar 

  5. Macklin M, Macklin C (1950) Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions. Medicine 23: 281–358

    Google Scholar 

  6. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure. Protection by positive end-expiratory pressure. Am Rev Respir Dis 199: 556–565

    Google Scholar 

  7. Corbridge TC, Wood LD, Crawford GP, Chudoba JR, Yanes J, Sznajder JL (1990) Adverse effects of large tidal volume and low PEEP in canrin acid aspiration. Am Rev Respir Dis 142: 311–315

    PubMed  CAS  Google Scholar 

  8. Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic acid injured lungs. J Appl Physiol 69: 2057–2061

    PubMed  CAS  Google Scholar 

  9. Kolobow T, Moretti MP, Fumagalli R et al (1987) Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. Am Rev Respir Dis 135: 312–315

    PubMed  CAS  Google Scholar 

  10. Mascheroni D, Kolobow T, Fumagalli R, et al (1988) Acute respiratory failure following pharmacologically-induced hyperventilation: An experimental animal study. Intensive Care Med 15: 8–14

    Article  PubMed  CAS  Google Scholar 

  11. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Am Rev Respir Dis 137: 1159–1164

    PubMed  CAS  Google Scholar 

  12. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  13. Bowton DL, Kong DL (1989) High tidal volume ventilation produces increased lung water in oleic acid injured rabbit lungs. Crit Care Med 17: 908–911

    Article  PubMed  CAS  Google Scholar 

  14. Parker JC, Townsley MI, Rippe B, et al (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57: 1809–1816

    PubMed  CAS  Google Scholar 

  15. Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131–143

    Article  PubMed  CAS  Google Scholar 

  16. Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Am Rev Respir Dis 142: 321–328

    PubMed  CAS  Google Scholar 

  17. Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol 69: 956–961

    PubMed  CAS  Google Scholar 

  18. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143: 1115–1120

    PubMed  CAS  Google Scholar 

  19. Dreyfuss D, Saumon G (1993) The role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am J Respir Crit Care Med 148: 1194–1203

    CAS  Google Scholar 

  20. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73: 123–133

    PubMed  CAS  Google Scholar 

  21. Wyszogrodski I, Kyei-Aboagye K, Taeusch HW, Avery ME (1975) Surfactant inactivation by hyperventilation: Conservation by end-expiratory pressure. J Appl Physiol 38: 461–466

    PubMed  CAS  Google Scholar 

  22. Gattiononi L, Pesenti A, Avalli L, Ross F, Bomino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Respir Dis 136: 730–736

    Article  Google Scholar 

  23. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814

    PubMed  CAS  Google Scholar 

  24. Sandhar BK, Niblett DJ, Argiras EP, Dunmill MS, Sykes MK (1988) Effect of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14: 538–546

    Article  PubMed  CAS  Google Scholar 

  25. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressure can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    PubMed  CAS  Google Scholar 

  26. Ranieri VM, Eissa NT, Corbeil C, et al (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 544–551

    Article  PubMed  CAS  Google Scholar 

  27. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med 22: 1568–1578

    Article  PubMed  CAS  Google Scholar 

  28. Amato MBP, Barbas CSV, Medeiros DM, et al (1993) Beneficial effects of the “open lung approach” with low distending pressures in ARDS. Am J Respir Crit Care Med 147: (Abst)

    Google Scholar 

  29. Bond DM, McAloon J, Froese AB (1994) Substantial inflations improve respiratory compliance during high frequency oscillatory ventilation but not during large tidal volume positive pressure ventilation in rabbits. Crit Care Med 22: 1269–1277

    Article  PubMed  CAS  Google Scholar 

  30. Kezzler M, Ryckman FC, McDonald JV, et al (1992) A prospective randomized study of high vs low PEEP during ECMO. J Pediatr 120: 107–113

    Article  Google Scholar 

  31. Rouple E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128

    Google Scholar 

  32. Ranieri VM, Giuliani R, Fiore T, Danbrosio M, Milic-Emili J (1994) Volume pressure curve of the respiratory system predicts effects of PEEP in ARDS: Occlusion vs constant flow technique. Am J Respir Crit Care Med 149: 19–27

    PubMed  CAS  Google Scholar 

  33. Putensen C, Bain M, Hormann C (1993) Selecting ventilator settings according to the variables derived from the quasi static pressure/volume relationship in patients with acute lung injury. Anesth Analg 77: 436–447

    Article  PubMed  CAS  Google Scholar 

  34. Suter PM, Fairley HB, Isenberg MD (1975) Optimic end-expiratory pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–289

    Article  PubMed  CAS  Google Scholar 

  35. Miller RS, Nelson RD, Di Russo SM, Rutherford EJ, Safesak K, Morris JA (1992) High level PEEP management in trauma associated adult respiratory distress syndrome. J Trauma 33: 284–290

    Article  PubMed  CAS  Google Scholar 

  36. Armstrong BW, MacIntyre NR (1995) Pressure-controlled, inverse ratio ventilation that avoid air trapping in the adult respiratory syndrome. Crit Care Med 23: 279–285

    Article  PubMed  Google Scholar 

  37. MacIntyre NR (1991) Intrinsic positive end-expiratory pressure. Prob Respir Care 4: 44–51

    Google Scholar 

  38. Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129: 385–387

    PubMed  CAS  Google Scholar 

  39. Fiehl F, Perret C (1994) Permissive hypercapnia — how permissive should we be? Am J Respir Crit Care Med 150: 1722–1737

    Google Scholar 

  40. Tuxen DV (1994) Permissive hypercapnic ventilation. Am J Respir Crit Care Med 150: 870–874

    PubMed  CAS  Google Scholar 

  41. Simon RJ, Mawilmada S, Ivatury RR (1884) Hypercapnia: Is there a cause for concern? J Trauma 37: 74–81

    Article  Google Scholar 

  42. Hedley-Whyte J, Laver MB, Bendixen HH (1964) Effect of changes in tidal ventilation on physiologic shunting. Am J Physiol 206: 891–897

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

MacIntyre, N.R. (1996). Strategies to minimize Alveolar Stretch Injury during Mechanical Ventilation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80053-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80053-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60552-2

  • Online ISBN: 978-3-642-80053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics