Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 26))

Abstract

The mucosal-associated lymphoid tissue (MALT) comprises all the lymphoid and mononuclear cells in the epithelia and lamina propria beneath the mucosal surface. MALT includes the upper respiratory tract and tonsils, the bronchial-associated lymphoid tissue (BALT), the salivary, lacrimal and lactating mammary glands, the gut-associated lymphoid tissue (GALT) and the uro-genital tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    Article  PubMed  CAS  Google Scholar 

  2. Kett K, Baklien K, Bakken A, Kral JG, Fausa O, Brandtzaeg P (1995) Intestinal B cell isotype response in relation to local bacterial load: Evidence for immunoglobulin A subclass adaptation. Gastroenterology 109: 819–825

    Article  PubMed  CAS  Google Scholar 

  3. Koshland ME (1975) Structure and function of the J chain. Adv Immunol 20: 41–51

    Article  PubMed  CAS  Google Scholar 

  4. Brantzaeg P, Prydz H (1984) Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311: 71–73

    Article  Google Scholar 

  5. Kaetzle CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME (1991) The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: A local defense function for IgA. Proc Natl Acad Sci USA 88: 8796–8800

    Article  Google Scholar 

  6. Mostov KE, Deitcher DL (1986) Polymeric immunoglobulin receptor expressed in MDCK cells trancytoses IgA. Cell 46: 613–621

    Article  PubMed  CAS  Google Scholar 

  7. Mazanec MB, Kaetzel CS, Lamm ME (1992) Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 89: 6901–6905

    Article  PubMed  CAS  Google Scholar 

  8. Kaetzle CS, Robinson JK, Lamm ME (1994) Epithelial transcytosis of monomeric IgA and IgG cross-linked through antigen to polymeric IgA. A role for monomeric antibodies in the mucosal immune system. J Immunol 152: 72–76

    Google Scholar 

  9. Weiss A, Stobo JD (1984) Requirement for the co-expression of T3 and T-cell antigen on a malignant T-cell line. J Exp Med 160: 1284–1299

    Article  PubMed  CAS  Google Scholar 

  10. Weissman AM, Baniyash M, Hou D, Samelson LE, Burgess WH, Klausner RD (1988) Molecular cloning of the zeta chain of the T-cell antigen receptor. Science 239: 1018–1021

    Article  PubMed  CAS  Google Scholar 

  11. Alarcon B, Berkhout B, Breitmeyer J, Terhorst C (1988) Assembly of the human T cell receptor-CD3 complex takes place in the endoplasmic reticulum and involves intermediary complexes between the CD3-γ,´,ε core and single T cell receptor α and β chains. J Biol Chem 263: 2953–2961

    PubMed  CAS  Google Scholar 

  12. Sancho J, Chatila T, Wong CK, et al (1989) T cell antigen receptor (TCR)-ab heterodimer formation is prerequisite for association of CD3-z2 into functionally competent TCR/CD3 complexes. J Biol Chem 264: 20760–20769

    PubMed  CAS  Google Scholar 

  13. Janeway CA Jr (1992) The T-cell receptor is a multicomponent signaling machine: CD4/ CD8 coreceptors and CD45 in T-cell activation. Ann Rev Immunol 10: 645–674

    Article  CAS  Google Scholar 

  14. Shepherd JC, Schumacher TNM, Ashton-Rickardt PG, et al (1993) TAP-1-dependent peptide translocation in vitro is ATP-dependent and peptide selective. Cell 74: 577–584

    Article  PubMed  CAS  Google Scholar 

  15. Lanzavecchia A, Reid PA, Watts C (1992) Irreversible association of peptides with class II MHC molecules in living cells. Nature 357: 249–252

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248: 1349–1356

    Article  PubMed  CAS  Google Scholar 

  17. Jenkins MK, Johnson JG (1993) Molecules involved in T-cell co-stimulation. Curr Opin Immunol 5: 361–367

    Article  PubMed  CAS  Google Scholar 

  18. Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM (1994) Pivotal role of the B7: CD28 pathway in transplantation tolerance and tumor immunity. Blood 84: 3261–3282

    PubMed  CAS  Google Scholar 

  19. Tivol EA, Borriello F, Schweitzer AN, et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role for CTLA-4. Immunity 5: 541–547

    Article  Google Scholar 

  20. Pirzer UC, Schurmann G, Post S, Betzler M, Meuer S (1990) Differential responsiveness to CD3Ti vs CD2-dependent activation of human intestinal T lymphocytes. Eur J Immunol 20: 2339–2342

    Article  PubMed  CAS  Google Scholar 

  21. Qiao L, Schurmann G, Betzler M, Meuer S (1991) Activation and signaling status of human lamina propria T lymphocytes. Gastroenterology 101: 1529–1536

    PubMed  CAS  Google Scholar 

  22. Ebert EC (1989) Proliferative responses of human intraepithelial lymphocytes to various T-cell stimuli. Gastroenterology 97: 1372–1381

    PubMed  CAS  Google Scholar 

  23. Boussiatis VA, Freeman GJ, Griffen JD, Gray CS, Gribben JG, Nadler LM (1994) CD2 is involved in maintenance and reversal of human alloantigen-specific clonal anergy. J Exp Med 180: 1665–1673

    Article  Google Scholar 

  24. Reinecker HC, Podolsky DK (1995) Human intestinal epithelial cells express functional cytokine receptors sharing the common γ chain of the interleukin-2 receptor. Proc Natl Acad Sci USA 92: 8353–8357

    Article  PubMed  CAS  Google Scholar 

  25. Mosmann TR, Coffman RL (1989) Th1 and Th2 cells: Different patterns of lymphokine secretion lead to different functional properties. Ann Rev Immunol 7: 145–173

    Article  CAS  Google Scholar 

  26. Sad S, Marcotte R, Mosmann TR (1995) Cytokine-induced differentiation of precursor mouse CD8 + T cells into cytotoxic CD8 + T cells secreting Th1 or Th2 cytokines. Immunity 2: 271–279

    Article  PubMed  CAS  Google Scholar 

  27. Van Furth R (1992) Development and distribution of mononuclear phagocytes. In: Gallin J, Goldstein I, Snyderman R (eds) Inflammation: Basic Principles and Clinical Correlates, 2nd edn., Raven Press, New York, pp 325–340

    Google Scholar 

  28. Kubes P (1993) Polymorphonuclear leukocyte-endothelium interactions: A role for proinflammatory and anti-inflammatory molecules. Can J Physiol Pharm 71: 88–97

    Article  CAS  Google Scholar 

  29. Simpson R, Alon R, Valeri CR, Shepro D, Hechtman HB (1993) Integrin-dependent neutrophil adhesion following gut ischemia and reperfusion. Behr Inst Mitt 92: 210–217

    CAS  Google Scholar 

  30. Simpson R, Alon R, Kobzik L, Valeri CR, Shepro D, Hechtman HB (1993) Neutrophil and non-neutrophil-mediated injury in intestinal ischemia/reperfusion. Ann of Surg 218: 444–454

    Article  CAS  Google Scholar 

  31. Goldman G, Welbourne R, Klausner JM, et al (1992) Mast cells and leukotrienes mediate neutrophil sequestration and lung edema after remote ischemia in rodents. Surgery 112: 578–586

    PubMed  CAS  Google Scholar 

  32. Kubes P, Kanwar S (1994) Histamine induces leukocyte rolling in post-capillary venules. A P-selectin-mediated event. J Immunol 152: 3570–3577

    PubMed  CAS  Google Scholar 

  33. Gaboury JP, Johnston B, Niu XF, Kubes P (1995) Mechanisms underlining acute mast cellinduced leukocyte rolling and adhesion in vivo. J Immunol 154: 804–813

    PubMed  CAS  Google Scholar 

  34. Neutra MR, Kraehenbuhl JP (1993) The role of transepithelial transport by M cells in microbial invasion and host defense. J Cell Sci (Suppl) 17: 209–215

    CAS  Google Scholar 

  35. Farstad IN, Halstensen TS, Fausa O, Brantzaeg P (1994) Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology 83: 457–464

    PubMed  CAS  Google Scholar 

  36. Weiner HL, Friedman A, Miller A, et al (1993) Oral tolerance: Immunological mechanisms and treatment of murine and human organ specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 12: 809–837

    Article  Google Scholar 

  37. Mowat AM (1994) Oral tolerance and regulation of immunity to dietary antigens. In: Ogra PL, Mestecky J, Lamm ME, et al (eds) Handbook of Mucosal Immunology. Academic Press, San Diego, pp 185–201

    Google Scholar 

  38. Challacombe SJ, Tomasi TB Jr (1980) Systemic tolerance and secretory immunity after oral immunization. J Exp Med 152: 1459–1472

    Article  PubMed  CAS  Google Scholar 

  39. James SP, Fiocchi C, Graeff AS, Strober W (1986) Phenotypic analysis of lamina propria lymphocytes: Predominance of helper-inducer and cytolytic T cell phenotypes and deficiency of suppressor-inducer phenotypes in Crohn’s disease and control patients. Gastroenterology 91: 1483–1489

    PubMed  CAS  Google Scholar 

  40. Peters MG, Secrist H, Anders KR, et al (1989) Normal intestinal lymphocytes: Increased activation compared with peripheral blood. J Clin Invest 83: 1827–1833

    Article  PubMed  CAS  Google Scholar 

  41. Pallone F, Fais S, Squarcia O, Biancone L, Boirivant A (1987) Activation of peripheral blood and intestinal lamina propria lymphocytes in Crohn’s disease. In vivo state of activation and response to stimulation as defined by the expression of activation antigens. Gut 28: 745–753

    Article  PubMed  CAS  Google Scholar 

  42. Zeitz M, Greene WC, Peffer NJ, James SP (1988) Lymphocytes isolated from the intestinal lamina propria of normal non-human primates have increased expression of genes associated with T-cell activation. Gastroenterology 94: 647–655

    PubMed  CAS  Google Scholar 

  43. Ebert EC (1989) Proliferative responses of human intraepithelial lymphocytes to various T-cell stimuli. Gastroenterology 97: 1372–1381

    PubMed  CAS  Google Scholar 

  44. Deem RL, Shanahan F, Targan SR (1991) Triggered human mucosal T cells release tumor necrosis factor-alpha and interferon-gamma which kill human colonic epithelial cells. Clin Exp Immunol 83: 79–84

    Article  PubMed  CAS  Google Scholar 

  45. Targan SR, Deem RL, Liu M, Wang S, Nel A (1995) Definition of a lamina propria T cell responsive state: Enhanced cytokine responsiveness of T cells stimulated through the CD2 pathway. J Immunol 154: 664–675

    PubMed  CAS  Google Scholar 

  46. Thompson CB, Lindsten T, Ledbetter JA, et al (1989) CD28 activation pathway regulates the production of multiple T cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA 86: 1333–1337

    Article  PubMed  CAS  Google Scholar 

  47. Ullrich R, Schieferdecker HL, Ziegler K, Riecken EO, Zeitz M (1990) Gamma/delta T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell Immunol. 128: 619–627

    Article  PubMed  CAS  Google Scholar 

  48. Deusch K, Pfeffer K, Reich K, et al (1991) Phenotypic and functional characterization of human TCRγ´+ intestinal intraepithelial lymphocytes. Curr Topics Micro Immunol 173: 279–283

    Article  CAS  Google Scholar 

  49. Balk SP, Ebert EC, Blumenthal RL, et al (1991) Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes. Science 253: 1411–1415

    Article  PubMed  CAS  Google Scholar 

  50. Van Kerckhove C, Russell GJ, Deusch K, et al (1992) Oligoclonality of human intestinal intraepithelial T cells. J Exp Med 175: 57–63

    Article  PubMed  Google Scholar 

  51. Blumberg RS, Yockey CE, Gross GG, Ebert EC, Balk SP (1993) Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple Vβ T cell receptor genes. J Immunol 150: 5144–5153

    PubMed  CAS  Google Scholar 

  52. Gross GG, Schwartz VL, Stevens C, Ebert EC, Blumberg RS, Balk SP (1994) Distribution of dominant T cell receptor beta chains in human intestinal mucosa. J Exp Med 180: 1337–1344

    Article  PubMed  CAS  Google Scholar 

  53. Chowers Y, Holtmeier W, Harwood J, Morzycka-Wroblewska E, Kagnoff M (1994) The Vδl T cell receptor repertoire in human small intestine and colon. J Exp Med 180: 183–190

    Article  PubMed  CAS  Google Scholar 

  54. Blumberg RS, Balk SP (1994) Intraepithelial lymphocytes and their recognition of non-classical MHC molecules. Int Rev Immunol 11: 15–30

    Article  PubMed  CAS  Google Scholar 

  55. Panja A, Blumberg RS, Balk SP, Mayer L (1993) CD1d is involved in T cell/intestinal epithelial cell interactions. J Exp Med 178: 1115–1119

    Article  PubMed  CAS  Google Scholar 

  56. Eckmann L, Kagnoff MF, Fierer J (1993) Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infection Immunity 61: 4569–4574

    PubMed  CAS  Google Scholar 

  57. Imhof BA, Dunon D (1995) Leukocyte migration and adhesion. Adv in Immunol 58: 345–410

    Article  CAS  Google Scholar 

  58. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte migration: The multi-step paradigm. Cell 76: 301–314

    Article  PubMed  CAS  Google Scholar 

  59. Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins α4β7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: The multistep model confirmed and refined. Immunity 3: 99–108

    Article  PubMed  CAS  Google Scholar 

  60. Deitch E (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125:403–404

    Article  PubMed  CAS  Google Scholar 

  61. Jones WG II, Minei JP, Barber AE, et al (1990) Bacterial translocation and intestinal atrophy after injury and burn wounds sepsis. Ann Surg 211: 399–405

    Article  PubMed  Google Scholar 

  62. Tracey KJ, Lowry SF (1990) The role of cytokine mediators in septic shock. Adv Surg 23: 21–56

    PubMed  CAS  Google Scholar 

  63. Tracey KJ, Cerami A (1993) Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9:317–343

    Article  PubMed  CAS  Google Scholar 

  64. Simpson R, Alan R, Kobzik L, Valeri R, Shepro D, Hechtman HB (1993) Neutrophil and nonneutrophil mediated injury in intestinal ischemia-reperfusion. Ann Surg 218: 444–454

    Article  PubMed  CAS  Google Scholar 

  65. Wells CL (1990) Relationship between intestinal microecology and translocation of intestinal bacteria. J Anton van Leeuwen 58: 87–93

    Article  CAS  Google Scholar 

  66. Berg R (1992) Bacterial translocation from the gastrointestinal tract. J Med 23: 217–244

    PubMed  CAS  Google Scholar 

  67. Marshall J, Christou N, Horn R, Meakins J (1988) The microbiology of multiple organ failure. Arch Surg 123: 309–315

    Article  PubMed  CAS  Google Scholar 

  68. Wood RFM, Ingham Clark CL (1994) Rejection and graft-versus-host disease. In: Grant DR, Wood RFM (eds) Small Bowel Transplantation. Edward Arnold Publishers, Great Britain, pp 30–42

    Google Scholar 

  69. Millard PR, Dennison A, Hughes DA, Collin J, Morris PJ (1986) Morphology of intestinal allograft rejection and the inadequacy of mucosal biopsies in its recognition. Br J Exp Pathol 67: 687–698

    PubMed  CAS  Google Scholar 

  70. Lear PA, Cunningham AJ, Crane PW, Wood RFM (1989) Lymphocyte migration patterns in small bowel transplants. Transplant Proc 21: 2881–2882

    PubMed  CAS  Google Scholar 

  71. Fabian MA, Bollinger RR (1992) Rapid translocation of bacteria in small bowel transplantation. Transplant Proc 24: 1103–1104

    PubMed  CAS  Google Scholar 

  72. Teitelbaum DH, Narasimhan, Chenault RH, Merion RM (1994) Lymphocyte immunologic interactions in intestinal transplantation. Transplant Proc 26: 1521–1526

    Google Scholar 

  73. Hoffman AL, Makowa L, Banner B, et al (1990) The use of FK506 for small intestine allotransplantation. Transplantation 49: 483–490

    Article  PubMed  CAS  Google Scholar 

  74. Azuma H, Tilney NL (1994) Chronic graft rejection. Curr Opin Immunol 6: 770–776

    Article  PubMed  CAS  Google Scholar 

  75. McDiaramid SV, Farmer DG, Kuniyoshi JS, et al (1994) The correlation of intragraft cytokine expression with rejection in rat small intestine transplantation. Transplantation 58: 690–697

    Google Scholar 

  76. Strom TB, Waldmann H (1994) Transplantation Editorial Review. Curr Opin Immunol 6: 755–756

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McVay, L.D. (1996). Immunology of the Gut. In: Rombeau, J.L., Takala, J. (eds) Gut Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80224-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80224-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80226-3

  • Online ISBN: 978-3-642-80224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics