Skip to main content

Ultrafast Electron Transfer in Modified Photosynthetic Reaction Centers from Rhodobacter Sphaeroides Measured by Fluorescence Upconversion

  • Conference paper
Laser in Forschung und Technik / Laser in Research and Engineering

Abstract

In photosynthetic reaction centers determination of ultrafast electron transfer rates as a function of the thermodynamical driving force ΔG allows conclusions on the mechanism of primary charge separation. In this paper we present femtosecond timeresolved fluorescence measurements on the primary donor species P* in reaction centers from Rhodobacter Sphaeroides R26 after modifying the energetics of the neighboring pigment, a bacteriochlorophyll molecule. The modification was achieved by thermally replacing the pigment by a specially designed derivative, the Ni-bacteriochlorophyll. Room temperature rates for the primary charge separation in the modified reaction centers are the same as in the native ones. This supports a sequential two step mechanism also in native reaction centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deisenhofer, J., O. Epp, K. Miki, R. Huber, and H. Michel. 1984. J. Mol. Biol. 180:385–398.

    Article  Google Scholar 

  2. Allen, J.P., G. Feher, T.O. Yeates, D.C. Rees, J. Deisenhofer, H. Michel, and R. Huber. 1986. Proc. Nat. Acad. Sci. USA 83:8589

    Article  ADS  Google Scholar 

  3. Chang, C.H., J. Norris, M. Schiffer, U. Smith, J. Tang, and D. Tiede. 1986. FEBS Lett. 205:82–86.

    Article  Google Scholar 

  4. Ermler, U., H. Michel, and M. Schiffer. 1994. J. Bioenerg. Biomembrane 26:5–15.

    Article  Google Scholar 

  5. Ermler, U., G. Fritzsch, S.K. Buchanan, and H. Michel. 1994. Structure 2:925–936.

    Article  Google Scholar 

  6. Deisenhofer, J., O. Epp, I. Sinning, and H. Michel. 1995. J. Mol. Biol. 246:429457.

    Article  Google Scholar 

  7. Langenbacher, T. 1995. Dissertation. TU München. In preparation.

    Google Scholar 

  8. Rousseau, G. 1995. Dissertation. TU München. In preparation.

    Google Scholar 

  9. Hartwich, G. 1994. Dissertation. TU München.

    Google Scholar 

  10. Friese, M. 1995. Dissertation. TU München. In preparation.

    Google Scholar 

  11. Müller, P. 1995. Dissertation. TU München. In preparation.

    Google Scholar 

  12. Jortner, J. 1976. J. Chem. Phys. 64:4860

    Article  ADS  Google Scholar 

  13. Heitele, H., F. Pöllinger, T. Häberle, M.E. Michel-Beyerle, and H.A. Staab. 1994. J Phys. Chem. 98:7402–7410.

    Article  Google Scholar 

  14. Bixon, M., J. Jortner, and M.E. Michel-Beyerle. 1990. 325–336, in Perspectives in Photosynthesis, Jortner, J. and Pullman, B., eds. Kluwer, Amsterdam.

    Chapter  Google Scholar 

  15. Bixon, M., J. Jortner, M.E. Michel-Beyerle, and A. Ogrodnik. 1989. Biochim. Biophys. Acta 977:273–286.

    Article  Google Scholar 

  16. Hu, Y.M. and S. Mukamel. 1989. Chem. Phys. Lett. 160:410–416.

    Article  ADS  Google Scholar 

  17. Marcus, R.A. 1987. Chem. Phys. Lett. 133:471

    Article  ADS  Google Scholar 

  18. Michel-Beyerle, M.E., M. Bixon, and J. Jortner. 1988. Chem. Phys. Lett. 151:188–194.

    Article  ADS  Google Scholar 

  19. Feher, G. and M.Y. Okamura. 1978. 349–386, in The Photosynthetic Bacteria, Clayton, R.K. and Sistrom, W.R. eds. Plenum Press. New York.

    Google Scholar 

  20. Hartwich, G., E. Cmiel, I. Katheder, W. Schäfer, A. Scherz, and H. Scheer. 1995. J Amer. Chem. Soc. in press.

    Google Scholar 

  21. Struck, A. and H. Scheer. 1990. FEBS Lett. 261:385–388.

    Article  Google Scholar 

  22. Gunner, M.R. and P.L. Dutton. 1988. 259–270, in The Photosynthetic Bacterial Reaction Center — Structure and Dynamics, Breton, J. and Verméglio, A. eds.

    Google Scholar 

  23. Kahlow, M.A., W. Jarzeba, T.P. DuBruil, and P.F. Barbara. 1988. Rev. Sci. Instr. 59:1098–1109.

    Article  ADS  Google Scholar 

  24. Grinvald, A. and I.Z. Steinberg. 1976. Anal. Biochem. 75:260–280.

    Article  Google Scholar 

  25. Bevington, P.R. and D.K. Robinson. 1992. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill.

    Google Scholar 

  26. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  27. Du, M., S.J. Rosenthal, X. Xie, T.J. DiMagno, M. Schmidt, D.K. Hanson, M. Schiffer, J.R. Norris, and G.R. Fleming. 1992. Proc. Nat. Acad. Sci. USA 89:8517–8521.

    Article  ADS  Google Scholar 

  28. Hamm, P., K.A. Gray, D. Oesterhelt, R. Feick, H. Scheer, and W. Zinth. 1993. Biochim. Biophys. Acta 1142:99–105.

    Article  Google Scholar 

  29. Stanley, R.J. and S.G. Boxer. 1995. J Phys. Chem. 99:859–863.

    Article  Google Scholar 

  30. Bixon, M., J. Jortner, and M.E. Michel-Beyerle. 1995. J Phys. Chem. submitted.

    Google Scholar 

  31. Schmidt, S., T. Arlt, P. Hamm, H. Huber, T. Nägele, J. Wachtveitl, M. Meyer, H. Scheer, and W. Zinth. 1994. Chem. Phys. Lett. 223:116–120.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Häberle, T., Lossau, H., Hartwich, G., Scheer, H., Michel-Beyerle, M.E. (1996). Ultrafast Electron Transfer in Modified Photosynthetic Reaction Centers from Rhodobacter Sphaeroides Measured by Fluorescence Upconversion. In: Waidelich, W., Hügel, H., Opower, H., Tiziani, H., Wallenstein, R., Zinth, W. (eds) Laser in Forschung und Technik / Laser in Research and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80263-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80263-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61316-9

  • Online ISBN: 978-3-642-80263-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics