Skip to main content

Simplifying Chemical Kinetics Using Intrinsic Low-Dimensional Manifolds

  • Conference paper
Gas Phase Chemical Reaction Systems

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 61))

  • 286 Accesses

Abstract

During the last years the interest in the numerical simulation of reacting flows has grown considerably. Numerical methods are available which allow to couple chemical kinetics with flow and molecular transport. However, the use of detailed physical and chemical models, involving more than 100 chemical species, is restricted to very simple flow configurations with very simple geometries, and models are required which simplify chemistry without sacrificing accuracy. As early as one hundred years ago Bodenstein observed that some chemical reactions are so fast that some chemical species in the reaction system are in a quasi-steady state. This observation has been the basis for practically all attempts to simplify the description of chemical reaction systems. We discuss a mathematical method, which can be used for the simplification of chemical kinetics. The method is simply based on local time scale analyses of chemical reaction systems. In this way the fast (and thus not rate limiting) chemical processes are identified and decoupled, and the chemistry can be described in terms of a small number of governing reaction progress variables. Examples for reacting flow calculations are shown and verify the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.B. Pope, 23th Symp. (Intl.) Combustion. The Combustion Institute, Pittsburgh, p. 591 (1990).

    Google Scholar 

  2. J. Warnatz, 24th Symp. (Intl.) Combustion. The Combustion Institute, Pittsburgh, p. 553 (1992).

    Google Scholar 

  3. H. Oertel, H. Körner (Ed.), Orbital Transport, Technical, Meteorological and Chemical Aspects. Springer, Berlin (1993).

    Google Scholar 

  4. Proc. Eurotrac 1994, Transport and Transformation of Pollutants in the Troposphere, Garmisch- Partenkirchen, Germany (1994).

    Google Scholar 

  5. M. Bodenstein, S. C. Lind, Z. phys. Chem. 57, 168 (1906).

    Google Scholar 

  6. M. D. Smooke (Ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics 384, Springer, Berlin Heidelberg New York (1991).

    Google Scholar 

  7. N. Peters, B. Rogg, Reduced Kinetics Mechanisms for Applications in Combustion Systems. Springer, Berlin (1993).

    Book  Google Scholar 

  8. A. S. Tomlin, M. J. Pilling, T. Turanyi, J. H. Merkin, J. Brindley, Combust. Flame 91, 107 (1992).

    Article  Google Scholar 

  9. S. H. Lam, D. A. Goussis, 22nd Symp. (Intl.) Combustion. The Combustion Institute, Pittsburgh, p. 931 (1990).

    Google Scholar 

  10. U. Maas, S. B. Pope, Combust. Flame 88, 239 (1992).

    Article  Google Scholar 

  11. U. Maas, Appl. Math. 40, 249 (1995).

    MathSciNet  MATH  Google Scholar 

  12. U. Maas, S. B. Pope, 24th Symp. (Intl.) Combustion. The Combustion Institute, Pittsburgh, p. 103 (1992).

    Google Scholar 

  13. U. Maas, S. B. Pope, 25th Symp. (Intl.) Combustion. The Combustion Institute, Pittsburgh, p. 1349 (1994).

    Google Scholar 

  14. U. Riedel, D. Schmidt, U. Maas, J. Warnatz , Laminar Flame Calculations Based on Automatically Simplified Chemical Kinetics Proc. Eurotherm Seminar # 35, Compact Fired Heating Systems, Leuven, Belgium (1994).

    Google Scholar 

  15. A. Wölfert, M. Nau, U. Maas, J. Warnatz, University of Heidelberg, Technical Report 94-69 (1994).

    Google Scholar 

  16. A. Norris, The Application of PDF Methods to Turbulent Diffusion Flames. Dissertation, Cornell University, Ithaca, NY, USA, (1993).

    Google Scholar 

  17. D. Schmidt, U. Maas, J. Warnatz, Simplifying Chemical Kinetics for the Simulation of Hypersonic Flows Using Intrinsic Low-Dimensional Manifolds Proc. 5th International Symposium on Computational Fluid Dynamics, Sendai, Japan (1993).

    Google Scholar 

  18. U. Maas, Automatische Reduktion von Reaktionsmechanismen zur Simulation reaktiver Strömungen, Habilitationsschrift, Universität Stuttgart (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maas, U. (1996). Simplifying Chemical Kinetics Using Intrinsic Low-Dimensional Manifolds. In: Wolfrum, J., Volpp, HR., Rannacher, R., Warnatz, J. (eds) Gas Phase Chemical Reaction Systems. Springer Series in Chemical Physics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80299-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80299-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80301-7

  • Online ISBN: 978-3-642-80299-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics