Skip to main content

Neurogenesis in the Adult Brain: Lessons Learned from the Studies of Progenitor Cells from the Embryonic and Adult Central Nervous Systems

  • Conference paper
Isolation, Characterization and Utilization of CNS Stem Cells

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

The developing brain represents a spectrum of differentiation, encompassing at one end mature differentiated cells with no ability to divide and at the other end a rare, self-sustaining population of stem cells that have the ability to give rise to all the cells of the central nervous system (CNS). In between these two extremes are cells termed progenitor cells, which are functionally immature and retain a limited proliferative capacity (Fig. 1). Although the presence of stem and progenitor cells within the CNS is a subject of great interest and debate, they are elusive cells and have not been definitely identified by the expression of a set of pheno-typic markers, like the stem cells in the hemopoeitic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–755

    Article  PubMed  CAS  Google Scholar 

  • Atlman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336

    Article  Google Scholar 

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine. J Comp Neurol 126:37–390

    Article  Google Scholar 

  • Balaci L, Presta M, Ennas MG, Dell’Era P, Sogos V, Lauro G, Gremo F (1994) Differential expression of fibroblast growth factor receptors by human neurons, astrocytes and microglia. Develop Neurosci 6:197–200

    CAS  Google Scholar 

  • Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1980b) Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190:115–134

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1982) Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res 46:315–323

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA, Yackel JW, Puri PS (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892

    Article  PubMed  CAS  Google Scholar 

  • Collazo D, Takahasi H, McKay RDG (1992) Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus. Neuron. 9:643–65

    Article  PubMed  CAS  Google Scholar 

  • Deloulme JC, Baudier J, Sensenbrenner M (1991) Establishment of pure neuronal cultures from fetal rat spinal cord and proliferation of the neuronal precursor cells in the presence of fibroblast growth factor. J Neurosci Res 29:499–509.

    Article  PubMed  CAS  Google Scholar 

  • Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor. I. Proc Natl Acad Sci USA 88:2199–2203

    Article  CAS  Google Scholar 

  • Emoto N, Gonzalez A-M, Walicke PA, Wada E, Simmons DM, Shamasaki S, Baird A (1989) Basic fibroblast growth factor (FGF) in the central nervous system: Identification of specific loci of basic FGF expression in the rat brain. Growth Factors 2:21–29

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Ousley F, Gospodarowicz D (1988) Bovine brain astrocytes express basic fibroblast growth factor, a neurotropic and angiogenic mitogen. Brain Res 462:223–232

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995a) Isolation, characterization, and use of stem cells from the CNS. Ann Rev Neurosci 18:159–192

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J (1995b) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92:11879–1183

    Article  PubMed  CAS  Google Scholar 

  • Gensburger C, Labourdette G, Sensenbrenner M (1987) Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett 217:1–5

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Pinilla F, Lee JW-K, Cotman CW (1994) Distribution of basic fibroblast growth factor in the developing rat brain. Neuroscience 4:911–923

    Article  Google Scholar 

  • Gonzales A-M, Buscaglia M, Ong M, Baird A (1990) Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol 110:753–765

    Article  Google Scholar 

  • Hartikka J, Hefti F (1988) Comparison of nerve growth factor’s effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro. J neurosci Res 21:352–364

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME, Lynch M, Rydel RE, Sanchez J, Joseph-Silverstein J, Moscatelli D, Rifkin DB (1988) In vitro neurite extension by granule neurons is dependent upon astroglia-derived growth factor. Dev Biol 125:280–289

    Article  PubMed  CAS  Google Scholar 

  • Hefti F (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6:2155–2162

    PubMed  CAS  Google Scholar 

  • Holt CE, Bertsch TW, Ellis HM, Harris WA (1988) Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1:15–26

    Article  PubMed  CAS  Google Scholar 

  • Hughes SM, Lillien LE, Raff MC, Rohrer H, Sendtner M (1988) Ciliary neurotrophic factor induced type-2 astrocyte differentiation in culture. Nature 335:70–73

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Yazaki N, Tagashira S, Miyake A, Ozaki K, Minami M, Satoh M, Ohta M, Kawasaki T (1994) Rat FGF receptor-4 mRNA in the brain is expressed preferentially in the medial habenular nucleus. Mol Brain Res 21:344–348

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neuronal precursors: requirements for proliferation and differentiation. Neuron 10:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick TJ, Bartlett PF (1995) Cloned multipotent precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J Neurosci 15:3653–3661

    PubMed  CAS  Google Scholar 

  • Kilpatrick TJ, Richards LJ, Bartlett PF (1995) The regulation of neural precursor cells within the mammalian brain. Mol Cell Neurosci 6:2–15

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1982) Developmental neurobiology and the natural history of nerve growth factor. Ann Rev Neurosci 5:341–362

    Article  PubMed  CAS  Google Scholar 

  • Levison SW, Goldman JE (1993) Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10:201–12

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Nicoll CS (1988) Evidence for a role of basic fibroblast growth factor in the rat embryonic growth and differentiation. Endocrinology 123:2027–2031

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian fore-brain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–77

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–89

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB, Pearlman AL, Sanes JR (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1:635–647

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB, McDormott KW (1994) Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone. Glia 11:211–226

    Article  PubMed  CAS  Google Scholar 

  • Matsuo A, Tooyama I, Isobe S, Oomura Y, Akiguchi I, Hanai K, Kimura J, Kimura H (1994) Immuno- histochemical localization in the rat brain of an epitope corresponding to the fibroblast growth factor receptor-1. Neurosci 60:49–66

    Article  CAS  Google Scholar 

  • Morrison RS, Sharma A, de Vellis J, Bradshaw RA (1986) Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc Natl Acad Sci USA 83:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, van der Kooy D (1992) Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J Neurosci 12:249–56

    PubMed  CAS  Google Scholar 

  • Murphy M, Drago J, Bartlett PF (1990) Fibroblast growth factor stimulates the proliferation and differentiation of neuronal precursor cells in vitro. J Neurosci Res 25:463–475

    Article  PubMed  CAS  Google Scholar 

  • Noble M, Murry K, Stroobant P, Waterfield MD, Riddle P (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Ray J, Gage FH (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6:474–486

    Article  PubMed  CAS  Google Scholar 

  • Perraud F, Besnard F, Pettmenn B, Sensenbrenner M, Labourdette G (1988) Effects of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture. Glia 1:124–131

    Article  PubMed  CAS  Google Scholar 

  • Pettmann B, Weibel M, Sensenbrenner M, Labourdette G (1985) Purification of two astroglial growth factors from bovine brain. FEBS Lett. 189:102–108

    Article  PubMed  CAS  Google Scholar 

  • Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84:156–160

    Article  PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303:390–6

    Article  PubMed  CAS  Google Scholar 

  • Ray J, Gage FH (1994) Spinal cord neuroblasts proliferate in response to basic fibroblast growth factor. J Neurosci, 14:3548–3564

    PubMed  CAS  Google Scholar 

  • Ray J, Peterson DA, Schinstine M, Gage FH (1993) Proliferation, differentiation and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci USA 90:3602–3606

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 225:1705–1710

    Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89:8591–8595

    Article  PubMed  CAS  Google Scholar 

  • Sabata O, Horellou P, Vigne E, Colin P, Perricaudet M, Buc-Caron M-H, Mallet J (1995) Transplantation to the rat brain of human neural progenitors that were genetically modified using adenovirus. Nature Genet 9:256–260

    Article  Google Scholar 

  • Schwartz-Levey M, Chikaraishi DM, Kauer JS (1991) Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J Neurosci 11:3556–64

    PubMed  CAS  Google Scholar 

  • Snyder EY (1994) Grafting immortalized neurons to the CNS. Curr Opin Neurobiol 4:742–751

    Article  PubMed  CAS  Google Scholar 

  • Svendsen CN, Rosser AE (1995) Neurons from stem cells? TINS 18:465–467

    PubMed  CAS  Google Scholar 

  • Svendsen CN, Fawcett JW, Bentlag C, Dunnett SB (1995) Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp Brain Res 102:07–414

    Article  Google Scholar 

  • Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–3

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino FM, Schwartz ML, Hartigan D, Leckman JF (1995) Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cerebral cortex: 64–68

    Google Scholar 

  • Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulats the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–66

    Google Scholar 

  • Walicke PA (1988) Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J Neurosci 8:2618–2627

    PubMed  CAS  Google Scholar 

  • Walicke PA, Baird A (1988) Trophic effects of fibroblast growth factor on neural tissue. Prog Brain Res 78:333–338

    Article  PubMed  CAS  Google Scholar 

  • Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci USA 83:3012–3016

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Cepko CL (1992) Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255:434–440

    Article  PubMed  CAS  Google Scholar 

  • Wanaka A, Johnson EM, Milbrandt J (1990) Localization of FGF receptor mRNA in the adult rat central nervous system by in situ hybridization. Neuron 5:267–281

    Article  PubMed  CAS  Google Scholar 

  • Wanaka A, Milbrandt J, Johnson EM (1991) Expression of FGF receptor gene in rat development. Development 111:455–468

    PubMed  CAS  Google Scholar 

  • Wetts R, Fraser SE (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Williams BP, Read J, Price J (1991) The generation of neurons and oligodendrocytes from a common precursor cell. Neuron 7:685–693

    Article  PubMed  CAS  Google Scholar 

  • Woodward WR, Nishi R, Meshul CK, Williams TE, Coulobme M, Eckenstein FP (1992) Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons. J Neurosci 12:142–152

    PubMed  CAS  Google Scholar 

  • Yazaki N, Hosoi Y, Kawabata K, Miyake A, Minami M, Satoh M, Ohta M, Kawasaki T, Itoh N (1994) Differential expression patterns of mRNAs for members of the fibroblast growth factor receptor family, FGFR-l-FGFR-4, in rat brain. J Neurosci. Res 37:445–452

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ray, J., Palmer, T.D., Suhonen, J., Takahashi, J., Gage, F.H. (1997). Neurogenesis in the Adult Brain: Lessons Learned from the Studies of Progenitor Cells from the Embryonic and Adult Central Nervous Systems. In: Gage, F.H., Christen, Y. (eds) Isolation, Characterization and Utilization of CNS Stem Cells. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80308-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80308-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80310-9

  • Online ISBN: 978-3-642-80308-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics