Skip to main content

Micromanipulation of Macromolecules: How to Measure the Stiffness of Single Microtubules

  • Chapter
Modern Optics, Electronics and High Precision Techniques in Cell Biology

Part of the book series: Principles and Practice ((PRINCIPLES))

  • 379 Accesses

Abstract

Optical tweezers are a combination of an intense light source and a standard light microscope, making it possible to grab and manipulate optically refracting particles in solution with the momentum of light. Ashkin and Dziedzic first used optical tweezers to manipulate biological objects such as viruses and bacteria in 1987. Since then, single-beam laser traps have frequently been employed to hold, move, and deform cells and subcellular particles. Examples include, but are not restricted to, the holding of yeast cells within a trap for more than one cell cycle (Ashkin et al. 1987), the manipulation of nuclei and organelles in plant cells (Ashkin and Dziedzic 1989; Leitz et al. 1994) and protozoa (Aufderheide et al. 1992), the displacement of chromosomes or chromosomes fragments in cultured cells (Berns et al. 1989; Seeger et al. 1991), the blockage of axonal transport (MArtenson et al. 1993), and cell sorting (Buican 1991; for reviews, see Block 1990; Kuo and Sheetz 1992; Weber and Greulich 1992). These studies have demonstrated convingcingly that intracellular organelles up to the size of nuclei as well as whole cells can be displaced or deformed without damaging effects. Apart from these in vivo experiments, optical tweezers-based techniques are widely used to measure physical parameters of single molecular motors and their step sizes (Finer et al. 1994; Kuo and Sheets 1993; Svoboda et al. 1993), or the elastic parameters of DNA (Perkins et al. 1995) or microtubules (Kurachi et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM (1989) Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci USA 86:7914–7918

    Article  PubMed  CAS  Google Scholar 

  • Aufderheide KJ, Du Q, Fry ES (1992) Directed positioning of nuclei in living Paramecium tetraurelia: use of the laser optical force trap for developmental biology. Dev Genet 13:234–240

    Article  Google Scholar 

  • Berns MW, Wright WH, Tromberg BJ, Profeta GA, Andrews JJ, Walter RJ (1989) Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle. Proc Natl Acad Sci USA 86:4539–4543

    Article  PubMed  CAS  Google Scholar 

  • Block SM (1990) Optical tweezers:a new tool for biophysics. In:Foskett JK, Grinstein S (eds) Noninvasive techniques in cell biology. John Wiley, New York, pp 375–402

    Google Scholar 

  • Buican TN (1991) Automated cell separation techniques based on optical trapping. Am Chem Soc Symp Ser 464:59–72

    Google Scholar 

  • Doi M, Edwards S (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Dye RB, Fink SP, Williams RC (1993) Taxol-induced flexibility of microtubules and its reversal by MAP-2 and tau. J Biochem 268:6847–6850

    CAS  Google Scholar 

  • Felgner H, Frank R, Schliwa M (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J Cell Sci 109:509–516

    PubMed  CAS  Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1964) The Feynman lectures on physics II. Addison-Wesley, Reading

    Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics:piconewton forces and nanometre steps. Nature 368:113–119

    Article  PubMed  CAS  Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    Article  PubMed  CAS  Google Scholar 

  • Kuo SC, Sheetz MP (1992) Optical tweezers in cell biology. Trends Cell Biol 2:116–118

    Article  PubMed  CAS  Google Scholar 

  • Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234

    Article  PubMed  CAS  Google Scholar 

  • Kurachi M, Hoshi M, Tashiro H (1995) Buckling of a single microtubule by optical trapping forces:direct measurement of microtubule rigidity. Cell Motil Cytoskel 30:221–228

    Article  CAS  Google Scholar 

  • Kurz JC, Williams RC (1995) Microtubule-associated proteins and the flexibility of microtubules. Biochem 34:13374–13380

    Article  CAS  Google Scholar 

  • Landau LD, Lifschitz EM (1986) Theory of elasticity, 3rd edn. Pergamon, Oxford

    Google Scholar 

  • Leitz G, Weber G, Seeger S, Greulich KO (1994) The laser microbeam trap as an optical tool for living cells. Physiol Chem Phys Med NMR 26:69–88

    PubMed  CAS  Google Scholar 

  • Mandelkow EM, Hermann M, Rühl U (1985) Tubulin domains probed by limited protolysis and subunit-specific antibodies. J Mol Biol 185:311–327

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E, Mandelkow E-M (1994) Microtubule structure. Curr Opinion Struct Biol 4:171–179

    Article  CAS  Google Scholar 

  • Mandelkow E, Mandelkow E-M (1995) Microtubules and microtubule-associated proteins. Curr Opinion Cell Biol 7:72–81

    Article  PubMed  CAS  Google Scholar 

  • Martenson C, Stone K, Reedy M, Sheetz MP (1993) Fast axonal transport is required for growth cone advance. Nature 366:66–69

    Article  PubMed  CAS  Google Scholar 

  • Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268:83–87

    Article  PubMed  CAS  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  PubMed  CAS  Google Scholar 

  • Seeger S, Manojembashi S, Hutter K-J, Futerman G, Wolfrum J, Greulich KO (1991) Application of laser optical tweezers in immunology and molecular genetics. Cytometry 12:497–504

    Article  PubMed  CAS  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Assembly of microtubules in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–768

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    Article  PubMed  CAS  Google Scholar 

  • Venier P, Maggs AC, Carlier M-F, Pantaloni D (1994) Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J Biochem 269:13353–13360

    CAS  Google Scholar 

  • Weber G, Greulich KO (1992) Manipulation of cells, organelles, and genomes by laser microbeam and optical trap. Int Rev Cytol 133:1–41

    Article  PubMed  CAS  Google Scholar 

  • Witman GB (1986) Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol 134:280–290

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Felgner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Felgner, H., Frank, R., Schliwa, M. (1998). Micromanipulation of Macromolecules: How to Measure the Stiffness of Single Microtubules. In: Isenberg, G. (eds) Modern Optics, Electronics and High Precision Techniques in Cell Biology. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80370-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80370-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80372-7

  • Online ISBN: 978-3-642-80370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics