Skip to main content

The Physiology of Tropisms

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

The historic work of Darwin, a century ago, has set a landmark in the field of plant movements, particularly in the category of directed growth (Darwin 1896). Plants and fungi through directed growth, defined as “tropism”, respond in spatial orientation to environmental stimuli such as light, gravity, temperature and water (Poff et al. 1994). The field has been reviewed by Hensel (1986) for Progress in Botany in vol. 48; for reviews in fungi, lower and higher plants see also Konings (1995); Fukaki et al. (1996); Estelle (1996); Sievers et al. (1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 163–166

    Google Scholar 

  • Audus IJ (1975) Geotropism in roots. In: Torrey JC, Clarkson DT (eds) The development and function of roots. Acadmic Press, London, pp 327–363

    Google Scholar 

  • Baluška F, Hauskrecht M, Barlow PW, Sievers A (1996a) Gravitropism of the primary root of maize: complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton. Planta 198: 310–318

    PubMed  Google Scholar 

  • Baluška F, Volkmann D, Hauskrecht M, Barlow PW (1996b) Root cap mucilage and extracellular calcium as modulators of cellular growth in post-mitotic growth zones of the maize root apex. Bot Acta 109: 25–34

    Google Scholar 

  • Banbury GH (1959) Phototropism of lower plants. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 17. Springer, Berlin Heidelberg New York, pp 530–578

    Google Scholar 

  • Berger F, Brownlee C (1994) Photopolarization of the Fucus sp. zygote by blue light involves a plasma membrane redox chain. Plant Physiol 105: 519–527

    PubMed  CAS  Google Scholar 

  • Bjorkman T, Leopold AC (1987a) Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots. Plant Physiol 84: 847–850

    PubMed  CAS  Google Scholar 

  • Bjorkman T, Leopold AC (1987b) An electric current associated with gravity sensing in maize roots. Plant Physiol 84: 841–846

    PubMed  CAS  Google Scholar 

  • Blaauw AH (1918) Licht und Wachstum III. Meded Landbouwhogesch Wageningen 15: 89–204

    Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in gravire-sponding maize roots. Planta 191: 231–237

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1995) Time course and auxin sensitivity of cortical microtubule reorientation in maize roots. Protoplasma 185: 72–82

    PubMed  CAS  Google Scholar 

  • Boysen Jensen P (1928) Die phototropische Induktion in der Spitze der Avena Koleoptile. Planta 5: 464–477

    Google Scholar 

  • Braun M (1996) Anomalous gravitropic response of Chara rhizoids during enhanced accelerations. Planta 199: 443–450

    PubMed  CAS  Google Scholar 

  • Braun M, Sievers A (1993) Centrifugation causes adaptation of microfilaments - studies on the transport of statoliths in gravity sensing Chara rhizoids. Protoplasma 174: 50–61

    PubMed  CAS  Google Scholar 

  • Braun M, Sievers A (1994) Role of the microtuble cytoskeleton in gravisensing Chara rhizoids. Eur J Cell Biol 63: 289–298

    PubMed  CAS  Google Scholar 

  • Briegleb W (1992) Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5: 23–30

    PubMed  CAS  Google Scholar 

  • Brown AH, Dahl AO, Chapman DK (1976) Morphology of Arabidopsis grown under chronic centrifugation and on the clinostat. Plant Physiol 57: 358–364

    PubMed  CAS  Google Scholar 

  • Bruinsma J, Karssen CM, Benschop M, Van Dort JB (1975) Hormonal regulation of phototropism in the light-grown sunflower seeding, Helianthus annuus L: immobility of endogenous indoleacetic acid and inhibition of hypocotyl growth by illuminated cotyledons. J Exp Bot 26: 411–418

    CAS  Google Scholar 

  • Campuzano V, Galland P, Alvarez MI, Eslava AP (1996) Blue-light receptor requirement for gravitropism, autochemotropism and ethylene response in Phycomyces. Photochem Photobiol 63: 686–694

    PubMed  CAS  Google Scholar 

  • Chen XY, Xiong YQ, Lipson ED (1993) Action spectrum for subliminal light control of adaptation in Phycomyces phototropism. Photochem Photobiol 58: 425–431

    PubMed  CAS  Google Scholar 

  • Cholodny N (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentralbl 47: 604–626

    CAS  Google Scholar 

  • Curry GM, Gruen HE (1959) Action spectra for the positive and negative phototropism of Phycomyces sporangiophores. Proc Natl Acad Sci USA 45: 797–804

    PubMed  CAS  Google Scholar 

  • Darwin C (1896) The power of movements in plants. Appleton, New York

    Google Scholar 

  • Delbrück M, Shropshire W Jr (1960) Action and transmission spectra of Phycomyces. Plant Physiol 35: 194–704

    PubMed  Google Scholar 

  • Dennison D (1979) Phototropism. In: Haupt W, Feinleib M (eds) Encyclopedia of plant physiology, vol 7. Springer, Berlin Heidelberg New York, pp 506–566

    Google Scholar 

  • Ding JP, Pickard BG (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3: 713–720

    PubMed  CAS  Google Scholar 

  • Edelmann HG, Sievers A (1995) Unequal distribution of osmiophilic particles in the epidermal periplasmic space of upper and lower flanks of gravi-responding rye cole-optiles. Planta 196: 396–399

    PubMed  CAS  Google Scholar 

  • Estelle M (1996) The ins and outs of auxin. Curr Biol 6: 1589–1591

    PubMed  CAS  Google Scholar 

  • Evans ML (1991) Gravitropism: interaction of senstivity modulation and effector redistribution. Plant Physiol 95: 1–5

    PubMed  CAS  Google Scholar 

  • Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31: 131–148

    Google Scholar 

  • Friedrich ULD, Joop O, Putz C, Willich G (1996) The slow rotating centrifuge microscope NIZEMI - a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J Biotech 47: 225–238

    CAS  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996) How do plant shoots bend up? - The initial step to elucidate the molecular mechanisms of shoot gravitropism using Arabidopsis thaliana. J Plant Res 109: 129–137

    PubMed  CAS  Google Scholar 

  • Fukshansky L (1993) Intracellular processing a spacially non-uniform stimulus–case study of phototropism in Phycomyces. J Photochem Photobiol B 19: 161–186

    CAS  Google Scholar 

  • Galland P (1991) Yearly review. Photosensory adaptation in aneural organisms. Photochem Photobiol 54: 1119–1134

    CAS  Google Scholar 

  • Galland P (1992) Fourty years of blue-light research and no anniversary. Photochem Photobiol 56: 847–854

    Google Scholar 

  • Galland P (1996) Ultraviolet killing and photoreactivation of Phycomyces spores. Microbiol Res 151: 9–17

    CAS  Google Scholar 

  • Galland P, Lipson ED (1985a) Action spectra for phototropic balance in Phycomyces blakesleeanus. Dependence on reference wavelength and intensity range. Photochem Photobiol 41: 323–329

    PubMed  CAS  Google Scholar 

  • Galland P, Lipson ED (1985b) Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madC, and madH. Photochem Photobiol 41: 331–335

    PubMed  CAS  Google Scholar 

  • Galland P, Lipson ED (1987) Blue-light reception in Phycomyces phototropism: evidence for two photosystems operating in low- and high-intensity ranges. Proc Natl Acad Sci USA 84: 104–108

    PubMed  CAS  Google Scholar 

  • Galland P, Senger H (1988) Yearly review. The role of pterins in the photoreception and metabolism of plants. Photochem Photobiol 48: 811–820

    CAS  Google Scholar 

  • Galland P, Corrochäno LM, Lipson ED (1989) Subliminal light control of dark adaptation kinetics in Phycomyces phototropisms. Photochem Photobiol 449: 485–492

    Google Scholar 

  • Galland P, Amon S, Senger H, Russo VEA (1995) Blue light reception in Phycomyces–red light sensitization in madC mutants. Bot Acta 108: 344–350

    CAS  Google Scholar 

  • Gardner G, Shaw S, Wilkins MB (1 a 974) IAA transport during the phototropic responses of intact Zea and Avena coleoptiles. Planta 121: 237–251

    Google Scholar 

  • Gehring CA, Williams DA, Cody SH, Parish RW (1990) Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature 345: 528–530

    PubMed  CAS  Google Scholar 

  • Gil P, Liu Y, Orbovic V, Verkanp E, Poff KL, Green PJ (1994) Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol 104: 777–784

    PubMed  CAS  Google Scholar 

  • Hager A (1996) Properties of a blue-light-absorbing photoreceptor kinase localized in the plasma membrane of the coleoptile tip region. Planta 198: 294–299

    PubMed  CAS  Google Scholar 

  • Hager A, Birch M (1993) Blue-light-induced phosphorylation of a plasma-membrane protein from phototropically sensitive tips of maize coleoptiles. Planta 189: 567–576

    CAS  Google Scholar 

  • Hager A, Birch M, Bazlen I (1993) Redox dependence of the blue-light-induced phosphorylation of a 100-kDa protein on isolated plasma membranes from tips of coleoptiles. Planta 190: 120–126

    CAS  Google Scholar 

  • Hasegawa K, Togo S (1989) Phototropism in hypocotyls of radish. VII. Involvement of the growth inhibitors, raphanusol A and B in phototropism of radish hypocotyls. J Plant Physiol 135: 110–113

    CAS  Google Scholar 

  • Hasegawa K, Yamada K (1992) Even distribution of endogenous indole-3-acetic acid in phototropism of pea epicotyls. J Plant Physiol 139: 455–459

    CAS  Google Scholar 

  • Haupt W (1996) Plant movements. In: Salisbury FB (ed) Units, symbols and terminology for plant physiology. Oxford University Press, Oxford, pp 120–125

    Google Scholar 

  • Hayami J, Kadota A, Wada M (1992) Intracellular dichroic orientation of the blue light- absorbing pigment and the blue-absorption band of the red-absorbing form of phytochrome responsible for phototropism of the fern Adiantum protonemata. Photochem Photobiol 56: 661–666

    CAS  Google Scholar 

  • Heathcote DG (1981) The geotropic reaction and statolith movements following geo-stimulation of mung bean hypocotyls. Plant Cell Environ 4: 131–140

    Google Scholar 

  • Hensel W (1986) Gravi- and phototropism of higher plants. Prog Bot 48: 205–214

    Google Scholar 

  • Hillman SK, Wilkins MB (1982) Gravity perception in decapped roots of Zea mays. Planta 155: 267–271

    Google Scholar 

  • Hodick D (1994) Negative gravitropism in Char a protonemata - a model integrating the opposite gravitropic responses of protonemata and rhizoids. Planta 195: 43–49

    PubMed  CAS  Google Scholar 

  • Hoshisakoda M, Usui K, Ishizuka K, Kosemura S, Yamamura S, Hasegawa K (1994) Structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and auxin-binding protein. Phytochemistry 37: 297–300

    Google Scholar 

  • Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3- acetic acid in maize coleoptiles. Plant Cell Environ 14: 279–286

    Google Scholar 

  • Iino M (1995) Gravitropism and phototropism of maize coleoptiles: evaluation of the Cholodny-Went theory through effects of auxin application and decapitation. Plant Cell Physiol 36: 361–367

    CAS  Google Scholar 

  • Iino M, Briggs WR (1984) Growth distribution during first positive phototropic curvature of maize coleoptiles. Plant Cell Environ 7: 97–104

    Google Scholar 

  • Imagawa K, Toko K, Ezaki S, Hayashi K, Yamafuji K (1991) Electrical potentials during gravitropism in bean epicotyls. Plant Physiol 97: 193–196

    PubMed  CAS  Google Scholar 

  • Iseki M, Wada S (1995) Action spectrum in the ultraviolet region for phototropism of Bryopsis rhizoids. Plant Cell Physiol 36: 1033–1040

    CAS  Google Scholar 

  • Iseki M, Mizukami M, Wada S (1995a) Positive phototropism in the thallus of Bryopsis plumosa. Plant Cell Physiol 36: 971–976

    CAS  Google Scholar 

  • Iseki M, Mizukami M, Wada S (1995b) Negative phototropism in the rhizoid of Bryopsis plumosa. Plant Cell Physiol 36:977–982

    CAS  Google Scholar 

  • Ishikawa H, Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102: 1203–1210

    PubMed  CAS  Google Scholar 

  • Jackson MB, Barlow PW (1981) Root geotropism and the role of growth regulators from the cap: a re-examination. Plant Cell Environ 4: 107–123

    CAS  Google Scholar 

  • James SA, Bell DT (1996) Leaf orientation in juvenile Eucalyptus camaldulensis. Aust J Bot 44: 139–156

    Google Scholar 

  • Johnsson A, Brown AH, Chapman DK, Heathcote D, Karlsson C (1995) Gravitropic responses of the Avena coleoptile in space and on clinostats. 2. Is reciprocity valid? Physiol Plant 95: 34–38

    PubMed  CAS  Google Scholar 

  • Juniper BE, Groves S, Landau-Schachar B, Audus LJ (1966) Root cap and the perception of gravity. Nature 209: 93–94

    Google Scholar 

  • Kiss JZ (1994) The response to gravity is correlated with the number of statoliths in Chara rhizoids. Plant Physiol 105: 937–940

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Planta 97: 237–244

    CAS  Google Scholar 

  • Konings H (1968) Significance of the root cap for geotropism. Acta Bot Neerl 17: 203–221

    Google Scholar 

  • Konings H (1995) Gravitropism of roots: an evaluation of progress during the last three decades. Acta Bot Neerl 44: 195–223

    CAS  Google Scholar 

  • Konjevic R, Steinitz B, Poff KL (1989) Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength. Proc Natl Acad Sci USA 86: 9876–9880

    PubMed  CAS  Google Scholar 

  • Konjevic R, Khurana JP, Poff KL (1992) Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana. Photochem Photobiol 55: 789–792

    PubMed  CAS  Google Scholar 

  • Kubo H, Mihara H (1996) Effects of microbeam light on growth and phototropism of Pilobolus crystallinus sporangiophores. Mycoscience 37: 31–34

    Google Scholar 

  • Kusnetsov OA, Hasenstein KH (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198: 87–94

    Google Scholar 

  • Kutschera U, Hoss R (1995) Mobilization of starch after submergence of air-grown rice coleoptiles. Implications for growth and gravitropism. Bot Acta 108: 266–269

    CAS  Google Scholar 

  • Leitz G, Schnepf E, Greulich KO (1995) Micromanipulation of statoliths in gravity-sensing Char a rhizoids by optical tweezers. Planta 197: 278–288

    PubMed  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell 3: 1167–1175

    PubMed  CAS  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the nphl locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473–485

    PubMed  CAS  Google Scholar 

  • Liscum E, Briggs WR (1996) Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol 112: 291–296

    PubMed  CAS  Google Scholar 

  • Liscum E, Young JC, Poff KL, Hangarter RP (1992) Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol 100: 267–271

    PubMed  CAS  Google Scholar 

  • Martinrojas V, Greiner H, Wagner T, Fukshansky L, Cerdd-Olmedo E (1995) Specific tropism caused by ultraviolet C radiation in Phy corny ces. Planta 197: 63–68

    CAS  Google Scholar 

  • Meske V, Hartmann E (1995) Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon purpureus during the phototropic response. Protoplasma 188: 59–69

    PubMed  CAS  Google Scholar 

  • Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells of Ceratodon purpureus. Protoplasma 192: 189–198

    Google Scholar 

  • Mirza JI, Olsen GM, Iversen TH, Maher EP (1984) The growth and gravitropic responses of wild-type and auxin-resistant mutants of Arabidposis thaliana. Physiol Plant 60: 516–522

    Google Scholar 

  • Monzer J (1995) Actin filaments are involved in cellular graviperception of the basidio-mycete Flammulina velutipes. Eur J Cell Biol 66: 151–156

    PubMed  CAS  Google Scholar 

  • Monzer J (1996) Cellular graviperception in the basidiomycete Flammulina velutipes - can the nuclei serve as fungal statoliths? Eur J Cell Biol 71: 216–220

    PubMed  CAS  Google Scholar 

  • Moore R, Maimon E (1993) Signal transmission during gravitropic curvature of primary roots of Zea mays. Plant Cell Environ 16: 105–108

    Google Scholar 

  • Moore D, Hock B, Greening JP, Kern VD, Frazer LN, Monzer J (1996) Gravimorphogenesis in agarics. Mycol Res 100: 257–273

    PubMed  Google Scholar 

  • Orbovic V, Poff KL (1993) Growth distribution during phototropism of Arabidopsis thaliana seedlings. Plant Physiol 103: 157–163

    PubMed  Google Scholar 

  • Paál A (1919) Ober phototropische Reizleitungen. Jahrb Wiss Bot 58:406–458

    Google Scholar 

  • Palmer JM, Short TW, Briggs WR (1993a) Correlation of blue light-induced phosphorylation to phototropism in Zea mays L. Plant Physiol 102: 1219–1225

    Google Scholar 

  • Palmer JM, Short TW, Gallagher S, Briggs WR (1993b) Blue light-induced phosphorylation of a plasma membrane-associated protein in Zea mays L. Plant Physiol 102: 1211–1218

    PubMed  CAS  Google Scholar 

  • Palmer JM, Warpeha KMF, Briggs WR (1996) Evidence that zeaxanthin is not the photo-receptor for phototropism in maize coleoptiles. Plant Physiol 110: 1323–1328

    PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D (1994) Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML-1 mission of Spacelab. Physiol Plant 90: 313–318

    PubMed  CAS  Google Scholar 

  • Pickard BG (1985) Roles of hormones, protons and calcium in geotropism. In: Pharis E, Reid D (eds) Encyclopedia of plant physiology, vol 11. Springer, Berlin Heidelberg New York, pp 193–281

    Google Scholar 

  • Pickard BG, Ding JP (1993) The mechanosensory calcium-selective ion channel–key component of a plasmalemmal control center. Aust J Plant Physiol 20: 439–459

    PubMed  CAS  Google Scholar 

  • Piening CJ, Poff KL (1988) Mechanism of detecting light direction in first positive phototropism in Zea mays L. Plant Cell Environ 11: 143–146

    Google Scholar 

  • Pilet PE (1982) Importance of the cap cells in maize root gravireaction. Planta 156: 95–96

    Google Scholar 

  • Poff KL, Martin HV (1989) Site of graviperception in roots: a reexamination. Physiol Plant 76: 451–455

    PubMed  CAS  Google Scholar 

  • Poff KL, Janoudi A-K, Rosen ES, Orbovic V, Konjevic R, Fortin M-C, Scott TK (1994) The physiology of tropism. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Lab Press, Cold Spring Harbor, pp 639–664

    Google Scholar 

  • Pohl U, Russo VEA (1984) Phototropism: In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum Press, New York, pp 231–329

    Google Scholar 

  • Poppe C, Hangarter RP, Sharrock RA, Nagy F, Schäfer E (1996) The light-induced reduction of the gravitropic growth orientation of seedlings of Arabidopsis thaliana (L.) Heynh is a photomorphogenic response mediated synergistically by the far-red absorbing forms of phytochromes A and B. Planta 199: 511–514

    PubMed  CAS  Google Scholar 

  • Quiñones MA, Zeiger E (1994) A putative role of the xantophyll zeaxanthin in blue light photoreception of corn coleoptiles. Science 264: 558–561

    Google Scholar 

  • Quiñones MA, Lu Z, Zeiger E (1996) Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomata opening and coleoptile phototropism. Proc Natl Acad Sci USA 93: 2224–2228

    PubMed  Google Scholar 

  • Reymond P, Short TW, Briggs WR, Poff KL (1992) Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 4718–4721

    PubMed  CAS  Google Scholar 

  • Ritter S, Koller D (1994) Movements of the trifoliate leaf of bean (Phaseolus vulgaris L.) during a simulated day, and their consequences for solar tracking fidelity and interception of solar radiation. J Plant Physiol 143: 64–71

    Google Scholar 

  • Robinson DG (1996) Osmiophilic particles at the plasma membrane: what role do they play in extension growth? Bot Acta 109: 81–83

    CAS  Google Scholar 

  • Rüdiger W, Briggs WR (1995) Involvement of thiol groups in blue-light-induced phosphorylation of a plasma membrane-associated protein from coleoptile tips of Zea mays L. Z Naturforsch [C] 50: 231–234

    Google Scholar 

  • Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127: 193–252

    PubMed  CAS  Google Scholar 

  • Salomon M, Zacherl M, Rüdiger W (1996) Changes in blue-light-dependent protein phosphorylation during the early development of etiolated oat seedlings. Planta 199: 336–342

    PubMed  CAS  Google Scholar 

  • Schmidt W (1984) Bluelight physiology. Bio Science 34: 698–704

    CAS  Google Scholar 

  • Shi L, Miller I, Moore R (1993) Immunocytochemical localization of indole-3-acetic acid in primary roots of Zea mays. Plant Cell Environ 16: 967–973

    CAS  Google Scholar 

  • Sievers A, Sondag C, Trebacz K, Hejnowicz Z (1995) Gravity-induced changes in intracellular potentials in statocytes of cress roots. Planta 197: 392–398

    PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1: 273–279

    PubMed  CAS  Google Scholar 

  • Sinclair W, Oliver I, Mäher P, Tewavas A (1996) The role of calmodulin in the gravitropic response of the Arabidopsis thaliana agr-3 mutant. Planta 199: 343–351

    PubMed  CAS  Google Scholar 

  • Sineshchekov AV, Lipson ED (1992) Effect of calcium on dark adaptation in Phycomyces phototropism. Photochem Photobiol 56: 667–675

    PubMed  CAS  Google Scholar 

  • Slocum RD, Roux SJ (1983) Cellular and subcellular localization of calcium in gravistimulated oat coleoptiles and its possible significance in the establishment of tropic curvature. Planta 157: 481–492

    CAS  Google Scholar 

  • Stinemetz C, Takahashi H, Suge H (1996) Characterization of hydrotropism: the timing of perception and signal movement from the root cap in the agravitropic pea mutant Ageotropum. Plant Cell Physiol 37: 800–805

    PubMed  CAS  Google Scholar 

  • Takahashi H (1994) Hydrotropism and its interaction with gravitropism in roots. Plant Soil 165: 301–308

    CAS  Google Scholar 

  • Takahashi H, Scott TK (1991) Hydrotropism and its interaction with gravitropism in maize roots. Plant Physiol 96: 558–564

    PubMed  CAS  Google Scholar 

  • Takahashi H, Scott TK (1993) Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ 16: 99–103

    PubMed  CAS  Google Scholar 

  • Takahashi H, Brown CS, Dreschel TW, Scott TK (1992) Hydrotropism in pea roots in a porous-tube water delivery system. Hortic Sci 27: 430–437

    CAS  Google Scholar 

  • Takano M, Takahashi H, Hirasawa T, Suge H (1995) Hydrotropism in roots - sensing of a gradient in water potential by the root cap. Planta 197: 410–413

    CAS  Google Scholar 

  • Thimann KV, Curry GM (1961) Phototropism. In: McElroy WD, Glass B (eds) Light and life. Johns Hopkins University Press, Baltimore, pp 646–672

    Google Scholar 

  • Togo S, Hasegawa K (1991) Phototropic stimulation does not induce unequal distribution of indole-3-acetic acid in maize coleoptiles. Physiol Plant 81: 555–557

    CAS  Google Scholar 

  • Totland O (1996) Flower heliotropism in an alpine population of Ranunculus acris (Ranunculaceae): effects on flower temperature, insect visitation, and seed production. Am J Bot 83: 452–458

    Google Scholar 

  • Trewavas A, Knight M (1994) Mechanical signalling, calcium and plant form. Plant Mol Biol 26: 1329–1341

    PubMed  CAS  Google Scholar 

  • Trewavas T, Briggs WR, Bruinsma J, Evans ML, Firn R, Hertel R, Lino M, Jones AM, Leopold AC, Pilet PE, Poff KL, Roux SJ, Salisbury FB, Scott TK, Sievers A, Zeischaug HE, Wayne R (1992) Forum: what remains of the Cholodny-Went theory? Plant Cell Environ 15: 759–794

    Google Scholar 

  • Vierstra R, Poff KL (1981) Role of carotenoids in the phototropic response of corn seedlings. Plant Physiol 68: 798–801

    PubMed  CAS  Google Scholar 

  • Volkmann D, Tewinkel M (1996a) Gravisensitivity of cress roots - investigations of threshold values under specific conditions of sensor physiology in microgravity. Plant Cell Environ 19: 1195–1202

    PubMed  CAS  Google Scholar 

  • Volkmann D, Tewinkel M (1996b) Graviresponse of cress roots under varying gravitational forces. J Biotech 47: 253–259

    CAS  Google Scholar 

  • Volkmann D, Behrens HM, Sievers A (1986) Development and gravity sensing of cress roots under microgravity. Naturwissenschaften 73: 438–441

    PubMed  CAS  Google Scholar 

  • Wada M, Sei H (1994) Phytochrome-mediated phototropism in Adiantum cuneatum young leaves. J Plant Res 107: 181–186

    Google Scholar 

  • Wagner G (1996) Macromolecular crystal growth in microgravity: bacteriorhodopsin. ESA Symp Proc 385: 235–238

    Google Scholar 

  • Walker LM, Sack FD (1995) Microfilament distribution in protonemata of the moss Ceratodon. Protoplasma 189: 235–237

    Google Scholar 

  • Warpeha KMF, Kaufman LS, Briggs WR (1992) A flavoprotein may mediate the blue light-activated binding of guanosine-S′-triphosphate to isolate plasma membranes of Pisum sativum L. Photochem Photobiol 55: 595–603

    CAS  Google Scholar 

  • Wayne R, Staves MP, Leopold AC (1990) Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis. Protoplasma 155: 43–57

    PubMed  CAS  Google Scholar 

  • Weisenseel MH, Becker HF, Ehlgötz JG (1992) Growth, gravitropism and endogenous ion currents of cress roots (Lepidium sativum L.) Plant Physiol 100: 16–25

    PubMed  CAS  Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Reel Trav Bot Neerl 25: 1–116

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Pill-Soon Song on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, G. (1998). The Physiology of Tropisms. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics