Skip to main content

Summary

The interaction of turbulent flow containing regions of high strain rate and high shear rate with polymer molecules can involve both individual molecules and polymer structures. The results of this interaction lead to suppressions of the small scale motions and to production of some large scale motions that do not contribute to turbulent diffusion. Experimental results are interpreted in terms of the interaction of molecules near the wall and movement of the polymeric large scale structures in the center of pipe flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, H.D.; Darby, R.: Effect of shear degradation on the rheological properties of dilute drag-reducing polymer solutions. J. Rheology 27 (1983) 77–88.

    Article  ADS  Google Scholar 

  2. Oliver, D.R.; Bakhtiyarov, S.I.: Drag reduction in exceptionally dilute polymer solutions. J. Non-Newtonian Fluid Mech. 12 (1983) 113–118.

    Article  Google Scholar 

  3. Berman, N.S.; Yuen, J.: The study of drag reduction using narrow fractions of polyox. Proc. 2nd International Conf. on Drag Reduction. BHRA Fluid Engineering. Cranfield, England. (1977) C1–1 - C1–10.

    Google Scholar 

  4. McComb, W.D.; Rabie, L.H.: Development of local turbulent drag reduction due to nonuniform polymer concentration. Phys. Fluids 22 (1979) 183–185.

    Article  ADS  Google Scholar 

  5. Lumley, J.L.: Drag reduction in turbulent flow by polymer additives. J. Poly. Sci. Macromolecular Reviews 7 (1973) 283–290.

    Google Scholar 

  6. Durst, F.; Haas, R.; Interthal, W.; Keck, T.: Polymerwirkung in stromungen-mechanismen und praktische anwendungen. Chem. Ing. Tech. 54 (1982) 213–221.

    Article  Google Scholar 

  7. Berman, N.S.: Drag reduction by polymers. Ann. Rev. Fluid Mech. 10 (1978) 47–64.

    Article  ADS  Google Scholar 

  8. Hunston, D.L.; Zakin, J.L.: Effect of molecular parameters on the flow rate dependence of drag reduction and similar phenomena. In Hough, G.R. ed.; Viscous Flow Drag Reduction (1980) 373–385.

    Google Scholar 

  9. Lumley, J.L.: Drag reduction by additives. Ann. Rev. Fluid Mech. 1 (1969) 367–384.

    Article  ADS  Google Scholar 

  10. Tan, H.; Berman, N.S.: A laser method to determine turbulent intensity using probability after effects. J. Phys. E. Sci. Instrum. 15 (1982) 906–910.

    Article  ADS  Google Scholar 

  11. Berman, N.S.; Tan, H.: Two component laser Doppler veloci-meter studies of submerged jets of dilute polymer solutions. AIChE Journal (1985) to be published.

    Google Scholar 

  12. Berman, N.S.; George, W.K.: Time scale and molecular weight distribution contributions of dilute polymer solution fluid mechanics. Proc. 1974 Heat Trans. Fluid Mech. Inst. Davis, L.R.; Wilson, R.E., eds. Stanford Univ. Press (1974) 348–364.

    Google Scholar 

  13. Ou, J.J.: The behavior of dilute polymer solutions: flow through constrictions. M.S. Thesis Arizona State University (1981).

    Google Scholar 

  14. Hinch, E.J.; Elata, C.: Heterogeneity of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 5 (1979) 411–425.

    Article  Google Scholar 

  15. Berman, N.S.; Berger, R.B.; Leis, J.R.: Drag reduction of well mixed solutions of poly (ethylene oxide) and organic dyes in water. J. Rheology 24 (1980) 571–587.

    Article  ADS  Google Scholar 

  16. Suaysompol, K.: Effects of ionic species on turbulent drag reduction of xanthan gum solutions. M.S. Thesis Arizona State University (1983).

    Google Scholar 

  17. Virk, P.S.: Drag reduction by collapsed and extended poly-electrolytes. Nature 253 (1975) 109–110.

    Article  ADS  Google Scholar 

  18. Berman, N.S.: Flow time scales and drag reduction. Phys. Fluids 20 (1977) 5168–5174.

    Article  Google Scholar 

  19. Landhal, M.: Drag reduction by polymer addition, in Proc. Thirteenth Int. Cong. Theor. Appl. Mech. (Moscow) Becker, E.; Mikhaelov, G.K. eds. Springer-Verlag, Berlin (1973) 177–199.

    Google Scholar 

  20. Sinha, P.K.: Drag reduction by centrally injected polymer jet. M.S. Thesis Arizona State University (1984).

    Google Scholar 

  21. Berman, N.S.; Sinha, P.K.: Drag reduction in pipe flow for non-homogeneous injection of polymer additives. in Proc. International Conf. Fund, and Appi. of Poly. Drag Red. in Liquid Flows. Bristol, England (1984).

    Google Scholar 

  22. Patterson, G.K.; Chosnek, J.; Zakin, J.L.: Turbulent structure in drag reducing polymer solutions. Phys. Fluids 20 (1977) S89 - S99.

    Article  ADS  Google Scholar 

  23. Durst, F.; Keck, T.; Kleine, R.: Turbulence quantities and Reynolds stress in pipe flow of polymer solutions measured by two channel laser-Doppler anemometry. in Turbulence in Liquids, Patterson, G,K.; Zakin, J.L. eds. (1981) 55–65.

    Google Scholar 

  24. Reischman, M.M.; Tiederman, W.G.: Laser-Doppler anemometer measurements in drag-reducing channel flows. J. Fluid Mech. 70 (1975) 369–392.

    Article  ADS  Google Scholar 

  25. Mizushina, T.; Usui, H.: Reduction of eddy diffusion for momentum and heat in viscoelastic fluid flow in a circular tube. Phys. Fluids 20 (1977) 5100–5108.

    Article  Google Scholar 

  26. McComb, W.D.; Chan, K.T.J.: Drag reduction in fibre suspensions: transitional behavior due to fibre degradation. Nature 280 (1979) 45–46.

    Article  ADS  Google Scholar 

  27. Berner, C.: Etude statistique de la structure de turbulence dans les fluides non-Newtoniens. Thesis Louis Pasteur University of Strasbourg (1980).

    Google Scholar 

  28. Tiederman, W.G.; Smith, A.J.: Structure of the viscous sub-layer in drag-reducing channel flows, in Turbulence in Liquids, Zakin, J.L.; Patterson, G.K. eds. (1977) 312–322.

    Google Scholar 

  29. Landahl, M.T.; Bark, F.H.: Application of a two-scale boundary layer turbulence model to drag reduction, in Colloques Internationaux du CNRS No. 233, Polymers et Lubrification (1975) 249–258.

    Google Scholar 

  30. Bogard, D.G.; Tiederman, W.G.: Evaluation of burst detectors with single point velocity measurements. Bull. Am. Phys. Soc. 28 (1983) 1396–1397.

    Google Scholar 

  31. Berman, N,S.; Berman, J.C.; Perkins, M.; Lindquist, W.; Hwang, J.J.: Initial development of submerged circular jets of dilute polymer solutions, in Turbulence in Liquids (Proc. Eighth Symposium on Turbulence, Rolla, MO, 1983) to be published 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer, Berlin Heidelberg

About this paper

Cite this paper

Berman, N.S. (1985). A Qualitative Understanding of Drag Reduction by Polymers. In: Gampert, B. (eds) The Influence of Polymer Additives on Velocity and Temperature Fields. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82632-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82632-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82634-4

  • Online ISBN: 978-3-642-82632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics