Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 2))

  • 83 Accesses

Abstract

All techniques used for positive pressure breathing — intermittent positive pressure ventilation (IPPV), continuous positive pressure ventilation (CPPV), continuous positive airway pressure (CPAP) or high frequency ventilation (HFV) [1] — result in an increase in intrathoracic pressure (Pinth) [2]. As mentioned in other chapters, Pinth elevation can decrease cardiac output (CO) and/or systemic arterial pressure (SAP) [3]. The magnitude of these hemodynamic changes is largely dependent on the pulmonary compliance, the level of Pinth increase, the underlying disease and the integrity of the cardiovascular reflexes.

This work was supported in part by an institutional grant program of Faculté PARIS VII and UER of Medecine Lariboisière — St Louis, and Fédération Française de Cardiologie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang HK, Harf A (1984) High frequency ventilation: a review. Resp Physiol 57:135–152

    Article  CAS  Google Scholar 

  2. Dorinsky PM, Whitcomb ME (1983) The effect of PEEP on cardiac output. Chest 84:210- 216

    Article  PubMed  CAS  Google Scholar 

  3. Luce JM (1984) The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA 252:807–811

    Article  PubMed  CAS  Google Scholar 

  4. Strangaard S (1976) Autoregulation of cerebral blood flow in hypertensive patiens. Stroke 53:720–727

    Google Scholar 

  5. Milnor WR (1982) In: Milnor WR (ed) Hemodynamics. Williams & Wilkins, Baltimore London, pp 25–29

    Google Scholar 

  6. Wagner EH, Traytsman RJ (1983) Cerebral venous outflow and arterial microsphere flow with elevated venous pressure. Am J Physiol 138:H 505-H 512

    Google Scholar 

  7. Luce JM, Huseby JS, Kirk W, Butler J (1982) A starling resistor regulates venous outflow in dogs. J Appl Physiol 53:1496–1503

    PubMed  CAS  Google Scholar 

  8. Huseby JS, Luce JM, Cary JM, Paulin EG, Butler J (1981) Effects of positive end-expira- tory pressure on intracranial pressure in dogs with intracranial hypertension. J Neurosurg 55:704–707

    Article  PubMed  CAS  Google Scholar 

  9. Apuzzo MLJ, Weiss MN, Pertersons V, Small RB, Kurze T, Heiden JS (1977) Effect of positive end-expiratory pressure ventilation on intracranial pressure in man. J Neurosurg 46:227–232

    Article  PubMed  CAS  Google Scholar 

  10. Payen DM, Levy BI, Menegalli DJ, Lajat Y, Levenson J A, Nicolas FM (1982) Evaluation of human hemispheric blood flow based on non invasive carotid blood flow measurements using the range gated Doppler technique. Stroke 13:382–398

    Article  Google Scholar 

  11. Payen D, Levy B, Pinaud M (1983) Effects of PEEP on human phasic carotid hemodynamics. J of Cereb Blood Flow & Metabol 3, Suppl:634–635

    Google Scholar 

  12. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  13. Marcus ML (1983) The coronary circulation in health and disease. Marcus ML (ed), Mc Graw Hill

    Google Scholar 

  14. Bellamy RF (1978) Diastolic coronary artery pressure-flow relations in the dog. Circ Res 43:92–101

    PubMed  CAS  Google Scholar 

  15. Lowenson HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE (1976) Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 39:760–766

    Google Scholar 

  16. Robotham JL, Cherry D, Mitzner W, Rabson JL, Lixfeld W, Bromberger-Barnea B (1983) A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation. Crit Care Med 11:783–793

    Article  PubMed  CAS  Google Scholar 

  17. Chilian WM, Marcus ML (1985) Effects of coronary and extravascular pressure on intra- myocardial and epicardial blood velocity. Am J Physiol 248:H170-H178

    PubMed  CAS  Google Scholar 

  18. Venus B, Jacobs HK (1984) Alterations in regional myocardial blood flows during different levels of positive end-expiratory pressure. Crit Care Med 12:96–101

    Article  PubMed  CAS  Google Scholar 

  19. Payen D, Bousseau D, Laborde F et al (1986) Comparison of per-operative and post-operative phasic blood flow in aortocoronary venous bypass grafts by means of pulsed Echo Doppler with implantable microprobes. Circulation Suppl III, 74 (in press)

    Google Scholar 

  20. Bousseau D, Payen DM, Laborde F, Beloucif S, Echter E, Piwnica A (1985) Effects of PEEP on human post-operative coronary bypass graft flow. Anesthesiology 63: A 518

    Article  Google Scholar 

  21. Payen D, Caraco JJ, Beloucif S, Bousseau D, Laborde F, Piwnica A (in press) Effects of positive pressure breathing on systolic and diastolic coronary bypass graft flow in humans. Anesthesiology

    Google Scholar 

  22. Brenner BM, Zatz R, Ichikawa I (1986) The Renal Circulation. In: Brenner BM, Rector FC (Eds) The kidney, WB Saunders Co, pp 93–123

    Google Scholar 

  23. Dibona GF (1982) The function of the renal nerves. Rev Physiol Biochem Pharmacol 94:76–181

    Google Scholar 

  24. Berry AJ (1981) Respiratory support and renal function. Anesthesiology 55:655–667

    Article  PubMed  CAS  Google Scholar 

  25. Hall SV, Johnson EE, Hedley-Whyte J (1974) Renal hemodynamic and function with continuous positive-pressure ventilation in dogs. Anesthesiology 41:452–461

    Article  PubMed  CAS  Google Scholar 

  26. Payen D, Farge D, Beloucif S, De la Coussaye JE, Chiron B, Wirquin V (in press) No involvement of ADH in acute antidiuresis during PEEP ventilation in humans. Anesthesiology

    Google Scholar 

  27. Fewell JE, Bond GC (1979) Renal denervation eliminates the renal response to continuous positive pressure ventilation. Proe Soc Exp Biol Med 161:574–578

    CAS  Google Scholar 

  28. Richardson PDI (1982) Physiological regulation of the hepatic circulation. Fed Proc 41:2111–2116

    PubMed  CAS  Google Scholar 

  29. Gioia FR, Harris AP, Traystman RJ, Rogers MC (1986) Organ blood flow during high frequency ventilation of low and high airway pressure in dogs. Anesthesiology 65:50–55

    Article  PubMed  CAS  Google Scholar 

  30. Hugues RL, Mathie RT, Fitch W, Campbell D (1979) Liver blood flow and oxygen consumption during hypocapnia and IPPV in the greyhound. J Appl Physiol 47:290–295

    Google Scholar 

  31. Johnson EE, Hedley-Whyte J (1972) Continuous positive-pressure ventilation and portal blood flow in dogs with pulmonary edema. J Appl Physiol 33:385–389

    PubMed  CAS  Google Scholar 

  32. Bredenberg CE, Paskanik A, Fromm D (1981) Portal hemodynamics in dogs during mechanical ventilation with positive end-expiratory pressure. Surgery 90:817–822

    PubMed  CAS  Google Scholar 

  33. Bonnet F, Richard C, Glaser P, Lafay M, Guesde R (1982) Changes in hepatic flow induced by continuous positive pressure ventilation in critically ill patients. Crit Care Med 10:703- 705

    Article  PubMed  CAS  Google Scholar 

  34. Winso O, Biber B, Gustausson B, Holm C, Milsom I, Niemand D (1986) Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med 12:80–85

    Article  PubMed  CAS  Google Scholar 

  35. Baile EM, Albert RK, Kirk W, et al (1984) Positive end-expiratory pressure decreases bronchial blood flow in the dog. J Appl Physiol 56:1289–1293

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Payen, D.M., Beloucif, S. (1987). Circulatory Effects of Mechanical Ventilation. In: Vincent, J.L., Suter, P.M. (eds) Cardiopulmonary Interactions in Acute Respiratory Failure. Update in Intensive Care and Emergency Medicine, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83010-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83010-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17474-5

  • Online ISBN: 978-3-642-83010-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics