Skip to main content

Hyperthermia-Induced Changes in Tumor Microcirculation

  • Conference paper
Application of Hyperthermia in the Treatment of Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 107))

Abstract

A biological rationale for treating malignant tumors with hyperthermia has been provided by a great number of studies in recent years. It became obvious that particularly nutritionally deprived, hypoxic and acidic tumor cells were very sensitive to heat (for a review see Dickson and Calderwood 1980; Overgaard and Bichel 1977; Overgaard 1981; Rhee et al. 1984; Song et al. 1980 a; Streffer 1985; Vaupel et al. 1983). This effect was not limited to tumor cells alone, but the deleterious effect of hyperthermia on microscopic blood channels suggested an inverse relationship between blood flow and thermal sensitivity (Dewhirst et al. 1984; Emami and Song 1984; Gullino et al. 1982; Pence and Song 1986; Reinhold and Endrich 1986; Song 1980b). Up to the present, however, only a few studies have evaluated directly the influence of heat on tumor capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baez S (1966) Recording of microvascular dimensions with an image-splitter television microscope. J Appl Physiol 21:299–301

    PubMed  CAS  Google Scholar 

  • Berg-Blok AE, Reinhold HS (1984) Time-temperature relationship for hyperthermia induced stoppage of the microcirculation in tumors. Int J Radiat Oncol Biol Phys 10: 737–740

    Article  Google Scholar 

  • Dewhirst M, Gross JF, Sim D, Arnold P, Boyer D (1984) The effect of rate of heating or cooling prior to heating on tumor and normal tissue microcirculatory flow. Biorheology 21: 539–558

    PubMed  CAS  Google Scholar 

  • Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann NY Acad Sci 335:180–205

    Article  PubMed  CAS  Google Scholar 

  • Dudar TE, Jain RK (1984) Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 44: 605–612

    PubMed  CAS  Google Scholar 

  • Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137: 515–521

    PubMed  CAS  Google Scholar 

  • Emami B, Song CW (1984) Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys 10: 289–295

    Article  PubMed  CAS  Google Scholar 

  • Emami B,Nussbaum GH,TenHaken RK,Hughes WL (1980) Physiological effects of hyperthermia: response of capillary blood flow and structure to local tumor heating. Radiology 137: 805–809

    PubMed  CAS  Google Scholar 

  • Endrich B, Hammersen F (1986)Morphologic and hemodynamic alterations in capillaries during hyperthermia. In: Anghileri LJ, Robert J. (eds) Hyperthermia in cancer treatment, vol 2. CRC, Boca Raton, pp 17–47

    Google Scholar 

  • Endrich B, Reinhold HS, Gross JF, Intaglietta M (1979 a) Tissue perfusion inhomogeneity during early tumor growth in rats. JNCI 62: 387–395

    CAS  Google Scholar 

  • Endrich B, Zweifach BW, Reinhold HS, Intaglietta M (1979 b) Quantitative studies of microcirculatory function in malignant tissue: influence of temperature on microvascular hemodynamics during the early growth of the BA1112 rat sarcoma. Int J Radiat Oncol Biol Phys 5: 2021–2030

    Article  PubMed  CAS  Google Scholar 

  • Endrich B,Asaishi K,Götz A,Meßmer K (1980) Technical report. A new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med 177:125–134

    Article  CAS  Google Scholar 

  • Endrich B, Götz A, Meßmer K (1982 a) Distribution of microflow and oxygen tension in hamster melanoma. Int J Microcirc Clin Exp 1: 81–99

    PubMed  CAS  Google Scholar 

  • Endrich B,Hammersen F,Götz A,Meßmer K (1982 b) Microcirculatory blood flow, capillary morphology and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. JNCI 68: 475–485

    CAS  Google Scholar 

  • Funk W, Endrich B, Meßmer K, Intaglietta M (1983) Spontaneous arteriolar vasomotion as a determinant of peripheral vascular resistance. Int J Microcirc Clin Exp 2:11–25

    PubMed  CAS  Google Scholar 

  • Gullino PM, Jain RK, Grantham FH (1982) Relationship between temperature and blood supply or consumption of oxygen and glucose by rat mammary carcinomas. JNCI 60: 519–533

    Google Scholar 

  • Hammersen F, Osterkamp-Baust U, Endrich B (1983) Ein Beitrag zum Feinbau terminaler Strombahnen und ihrer Entstehung in bösartigen Tumoren. Prog Appl Microcirc 2:15–51

    Google Scholar 

  • Hammersen F, Endrich B, Meßmer K (1985) The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int J Microcirc Clin Exp 4: 31–43

    PubMed  CAS  Google Scholar 

  • Intaglietta M, Tompkins WR (1973) Microvascular measurements by video image shearing and splitting. Microvasc Res 5: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta M, Pawula RF, Tompkins WR (1970) Pressure measurements in the mammalian microvasculature. Microvasc Res 2: 212–220

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta M, Silverman NR, Tompkins WR (1975) Capillary flow velocity measurements in vivo and in situ by television method. Microvasc Res 10:165–179

    Article  PubMed  CAS  Google Scholar 

  • Johnson P (1980)The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV. (eds) Handbook of physiology, vol 2, sect 2. American Physiological Society, Bethesda, pp 409–442

    Google Scholar 

  • Kessler M, Höper J, Krumme BA (1976) Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184–197

    Article  PubMed  CAS  Google Scholar 

  • Müller-Klieser W, Vaupel P (1984) Effect of hyperthermia on tumor blood flow. Biorheology 21: 529–538

    PubMed  Google Scholar 

  • Oda T, Lehmann A, Endrich B (1984) Capillary blood flow in the amelanotic melanoma of the hamster after isovolemic hemodilution. Biorheology 21: 509–520

    PubMed  CAS  Google Scholar 

  • Overgaard J (1981) Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo. Br J Radiol 54: 245–249

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Bichel P (1977) The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 123: 511–514

    PubMed  CAS  Google Scholar 

  • Overgaard J, Nielsen OS (1980) The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann NY Acad Sci 335: 254–278

    Article  PubMed  CAS  Google Scholar 

  • Pence DW, Song CW (1986)Effects of heat on blood flow. In: Anghileri LJ, Robert J. (eds) Hyperthermia in cancer treatment, vol 2. CRC, Boca Raton, pp 1–16

    Google Scholar 

  • Reinhold HS, Endrich B (1986) Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 2: 111–137

    Article  PubMed  CAS  Google Scholar 

  • Reinhold HS, Blachiewicz B, Berg-Blok A (1978)Decrease in tumor microcirculation during hyperthermia. In: Streffer C. (ed) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Munich, pp 231-232

    Google Scholar 

  • Rhee JG, Kim TH, Levitt SH, Song CW (1984) Changes in acidity of mouse tumor by hyperthermia. Int J Radiat Oncol Biol Phys 10: 393–399

    Article  PubMed  CAS  Google Scholar 

  • Scheid P (1961) Funktionelle Besonderheiten der Mikrozirkulation im Karzinom. Bibl Anat 1: 327–335

    Google Scholar 

  • Schmid-Schonbein GW, Zweifach BW, Kovalchek S (1977) The application of stereological principles to morphometry of the microcirculation in different tissues. Microvasc Res 14: 303–317

    Article  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980 a) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann NY Acad Sci 335: 35–47

    Article  PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980b) The effect of hyperthermia on vascular function, pH and cell survival. Radiology 137: 795–803

    PubMed  CAS  Google Scholar 

  • Streffer C (1985) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1: 305–319

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P (1982) Einfluß einer lokalisierten Mikrowellenhyperthermie auf die pH-Verteilung in bosartigen Tumoren. Strahlentherapie 158: 168–173

    PubMed  CAS  Google Scholar 

  • Vaupel P, Ostheimer K, Müller-Klieser W (1980) Circulatory and metabolic responses of malignant tumors during normothermia and hyperthermia. J Cancer Res Clin Oncol 98: 15–29

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Müller-Klieser W, Otte J, Manz R, Kallinowski F (1983) Blood flow, tissue oxygenation, and pH distribution in malignant tumors upon localized hyperthermia. Basic pathophysiological aspects and the role of various thermal doses. Strahlentherapie 159: 73–81

    PubMed  CAS  Google Scholar 

  • Von Ardenne M (1986)The present developmental state of cancer multistep therapy (CMT): Selective occlusion of cancer tissue capillaries by combining hyperglycemia with two stage regional or local hyperthermia using the CMT Selectotherm technique. In: Anghileri LJ, Robert J. (eds) Hyperthermia in cancer treatment, vol 3. CRC, Boca Raton, pp 1–24

    Google Scholar 

  • Wiederhielm CA, Woodbury JW, Kirk ES, Rushmer RF (1964) Pulsatile pressure in the microcirculation of the frog’s mesentery. Am J Physiol 207: 173–176

    PubMed  CAS  Google Scholar 

  • Wike-Hooley JL, Zee J, Rhoon GC, Berg AP, Reinhold HS (1984) Human tumor pH changes following hyperthermia and radiation therapy. Eur J Cancer Clin Oncol 20: 619–623

    Article  PubMed  CAS  Google Scholar 

  • Zweifach BW (1974) Quantitative analysis of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ Res 34: 843–857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Endrich, B., Hammersen, F., Messmer, K. (1988). Hyperthermia-Induced Changes in Tumor Microcirculation. In: Issels, R.D., Wilmanns, W. (eds) Application of Hyperthermia in the Treatment of Cancer. Recent Results in Cancer Research, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83260-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83260-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83262-8

  • Online ISBN: 978-3-642-83260-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics