Skip to main content

The Problem of Defining Thermal Dose

  • Conference paper
Preclinical Hyperthermia

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 109))

Abstract

The rationale for using hyperthermia to treat malignant disease is based on experimental studies which suggest that tumours may be more susceptible to thermal injury than normal tissues (Field and Bleehen 1979). In particular, solid tumours may have an inadequate vascular supply so that many tumour cells may be in an environment (low nutrient and oxygen supply, low pH) which increases thermal sensitivity. Another consequence of a low blood flow is that removal of heat from a locally heated tumour may be poor so that it reaches higher temperatures than adjacent normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer KD, Henle KJ (1979) Arrhenius analysis of heat survival curves from normal and thermotolerant CHO cells. Radiat Res 78: 251–263

    Article  PubMed  CAS  Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 463–474

    PubMed  CAS  Google Scholar 

  • Field SB (1987) Biological effects of hyperthermia. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Nijhoff, The Hague

    Google Scholar 

  • Field SB, Bleehen NM (1979) Hyperthermia in the treatment of cancer. Cancer Treat Rev 6: 63–94

    Article  PubMed  CAS  Google Scholar 

  • Field SB, Morris CC (1983) The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiother Oncol 1: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Field SB, Morris CC (1984) Application of the relationship between heating time and temperature for use as a measure of thermal dose. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 183–186

    Google Scholar 

  • Field SB, Morris CC (1985) Experimental studies of thermotolerance in vivo. I. The baby rat tail model. Int J Hyperthermia 1: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Field SB, Hume SP, Law MP (1980) The response of tissues to heat alone or in combination with radiation. In: Okada S, Imamura M, Terashima T, Yamaguchi H (eds) Proceedings, 6th international congress of radiation research, 13–19 May 1979. Japanese Association for Radiation Research, Tokyo (ISSN 0538-6586)

    Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Google Scholar 

  • Henle KJ, Bitner AF, Dethlefsen LA (1979) Induction of thermotolerance by multiple heat fractions in Chinese hamster ovary cells. Cancer Res 39: 2486–2491

    PubMed  CAS  Google Scholar 

  • Hume SP, Marigold JCL (1985) Time-temperature relationships for hyperthermal radiosensitisation in mouse intestine: influence of thermotolerance. Radiother Oncol 3: 165–171

    Article  PubMed  CAS  Google Scholar 

  • Law MP (1979) Induced thermal resistance in the mouse ear: the relationship between heating time and temperature. Int J Radiat Biol 35: 481–485

    CAS  Google Scholar 

  • Law MP (1981) The induction of thermal resistance in the ear of the mouse by heating at temperatures ranging from 41.5-45.5° C. Radiat Res 85: 126–134

    Article  PubMed  CAS  Google Scholar 

  • Law MP (1985) Thermotolerance induced in the mouse ear by fractionated hyperthermia depends on the interval between fractions. Strahlentherapie 161: 541 (Abstr)

    Google Scholar 

  • Law MP (1987) The response of normal tissues to hyperthermia. In: Urano M (ed) Hyperthermia and oncology, vol 1. VNU Scientific, The Netherlands

    Google Scholar 

  • Law MP, Coultas PG, Field SB (1979) Induced thermal resistance in the mouse ear. Br J Radiol 52: 308–314

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Somaia S, Field SB (1984) The induction of thermotolerance in the ear of the mouse by fractionated hyperthermia. Int J Radiat Oncol Biol Phys 10: 865–873

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Somaia S (1987) Thermotolerance induced by fractionated hyperthermia: dependence on the interval between fractions. Int J Hyperthermia 3: 433–439

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1982) Importance of preheating temperature and time for the induction of thermotolerance in a solid tumour in vivo. Br J Cancer 46: 894–903

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1985) Studies on fractionated hyperthermia in L1A2 tumour cells in vitro: response to multiple equal heat fractions. Int J Hyperthermia 1: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1980) Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissues in vivo. Int J Radiat Oncol Biol Phys 6: 1507–1517

    PubMed  CAS  Google Scholar 

  • Overgaard J (1981) Fractionated radiation and hyperthermia: experimental and clinical studies. Cancer 48: 1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1982) Influence of sequence and interval on the biological response to combined hyperthermia and radiation. Natl Cancer Inst Monogr 61: 325–332

    PubMed  CAS  Google Scholar 

  • Overgaard J (1984) Hyperthermia and radiation. Biological rationale and clinical experience. Proceedings, Variants 4th European clinac users meeting, 25–26 May 1984, Malta

    Google Scholar 

  • Overgaard J, Nielsen OS (1984) Influence of thermotolerance on the effect of multifractionated hyperthermia in a C3H mammary carcinoma in vivo. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 211–214

    Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10: 787–806

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Law, M.P., Field, S.B. (1988). The Problem of Defining Thermal Dose. In: Hinkelbein, W., Bruggmoser, G., Engelhardt, R., Wannenmacher, M. (eds) Preclinical Hyperthermia. Recent Results in Cancer Research, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83263-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83263-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83265-9

  • Online ISBN: 978-3-642-83263-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics