Skip to main content

Analysis of Black Tea Volatiles

  • Chapter
Analysis of Nonalcoholic Beverages

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 8))

Abstract

Tea was used in China before 2000 B.C. as a medicine, because of its physiological effect. Nowadays, tea is one of the most widely consumed beverages in the world, and its popularity consists certainly in its pleasant flavor combined with its stimulating effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisaka H, Kosuge M, Yamanishi T (1978) Comparison of Chinese “Keemum” black tea and Ceylon black tea. Agric Biol Chem 42:2157–2159

    Article  CAS  Google Scholar 

  • Blanc M (1972) Les caroténoides du thé. Distribution et variations au cours de traitements technologiques. Lebensm Wiss Technol 5:95–97

    CAS  Google Scholar 

  • Bondarovich HA, Giammerino AS, Renner JA, Shephard FW, Shingler AJ, Gianturco MA (1967) Some aspects of the chemistry of tea. A contribution to the knowledge of the volatile constituents. J Agric Food Chem 15:36–47

    Article  CAS  Google Scholar 

  • Brandenberger H, Müller S (1962) A gaschromatographic separation of volatile fatty acids of black tea. J Chromatogr 7:137–141

    Article  CAS  Google Scholar 

  • Bricout J, Viani R, Müggler-Chavan F, Marion J, Reymond D, Egli R (1967) Sur la composition de l’aróme du thé noir (2). Helv Chim Acta 50:1517–1522

    Article  CAS  Google Scholar 

  • Cazenave P, Horman I (1974) Sur la composition de thé noir (5). Helv Chim Acta 57:209–211

    Article  CAS  Google Scholar 

  • Cazenave P, Horman I, Müggler-Chavan F, Viani R (1974) Sur la composition de l’aróme de thé noir (4). Helv Chim Acta 57:206–209

    Article  CAS  Google Scholar 

  • Chang S, Peterson R (1977) Recent developments in the flavor of meat. J Food Sci 42:298–305

    Article  CAS  Google Scholar 

  • Cloughley J, Ellis R, Pendlington S, Humphrey P (1982) Volatile constituents of some central African black tea clones. J Agric Food Chem 30:842–845

    Article  CAS  Google Scholar 

  • Coenen H, Eggers R, Kriegel E (1982) Die Trennung von Stoffgemischen mit überkritischen Gasen. Chemie Technik 11:1199–1205

    CAS  Google Scholar 

  • Croteau R (1980) The biosynthesis of terpene compounds. In: Croteau R (ed) Fragrance and flavor substances. D & PS, Pattensen, p 13

    Google Scholar 

  • Eden T (1976) Tea, 3rd edn. Longman, London

    Google Scholar 

  • Engel KH, Tressl R (1983) Formation of aroma components from nonvolatile precursors in passion fruit. J Agric Food Chem 31:998–1002

    Article  CAS  Google Scholar 

  • Folkes D, Gramshaw J (1977) Volatile constituents of white bread crust. J Food Technol 12:1–8

    Article  CAS  Google Scholar 

  • Forney F, Markovetz AJ (1971) Biology of methyl ketones. J Lipid Res 12:383–395

    PubMed  CAS  Google Scholar 

  • Forss DA (1969) Role of lipids in flavors. J Agric Food Chem 17:681–686

    Article  CAS  Google Scholar 

  • Galliard T (1978) Lipolytic and lipoxygenäse enzymes in plants and their action in wounded tissues. In: Kahl G (ed) Biochemistry of wounded plant tissues, de Gruyter, Berlin, New York, p 155

    Google Scholar 

  • Gianturco MA, Biggers RE, Ridling BH (1974) Seasonal variations in the composition of volatile constituents of black tea. A numerical approach to the correlation between composition and quality of tea aroma. J Agric Food Chem 22:758–764

    Article  CAS  Google Scholar 

  • Gogiya VT, Tkeshelasvili CF (1972) Phenols of the essential oil of tea. Prikl Biokhim Mik-robiol 8:600–603

    Google Scholar 

  • Grimmett C (1981) The use of liquid carbon dioxide for extracting natural products. Chem Ind 359–382

    Google Scholar 

  • Grosch W (1982) Lipid degradation products and flavours. In: Morton ID, MacLeod AJ (eds) Food flavours. Part A — Introduction. Elsevier, Amsterdam, p 325

    Google Scholar 

  • Hatanaka A, Harada T (1972) Purification and properties of alcohol dehydrogenase from tea seed. Agric Biol Chem 36:2033–2035

    Article  CAS  Google Scholar 

  • Hatanaka A, Harada T (1973) Formation of cis-3-hexenal, tr-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry 12:2341–2346

    Article  CAS  Google Scholar 

  • Hatanaka A, Kajiwara T (1981) Occurrence of (E)-3-hexenal in Thea sinensis leaves. Z Na-turforsch 36B:755-758

    Google Scholar 

  • Hatanaka A, Sekiya J, Kajiwara T, Miura T (1979 a) Further characterization of the enzyme system producing C-6-aldehydes from C-18-unsaturated fatty acids in tea chlo-roplasts. Agric Biol Chem 43:735–737

    Article  CAS  Google Scholar 

  • Hatanaka A, Kajiwara T, Sekiya J, Fujimura KI (1979 b) Participation of 13-hydroperoxid in the formation of hexanal from linoleic acid in tea chloroplasts. Agric Biol Chem 43:175–177

    Article  CAS  Google Scholar 

  • Hatanaka A, Kajiwara T, Koda T (1979 c) Specificity of enzyme system producing C-6-aldehydes in tea chloroplasts. Agric Biol Chem 43:2115–2116

    Article  CAS  Google Scholar 

  • Heins JT, Maarse H, Ten Noever de Brauw MC, Weurman C (1966) Direct food vapour analysis and component identification by a coupled capillary GLC-MS arrangement. J Gas Chromatogr 4:395–397

    CAS  Google Scholar 

  • Howard GE (1979) The volatile constituents of tea. Food Chem 4:97–106

    Article  CAS  Google Scholar 

  • Ina K, Eto H (1971) 3-keto-β-ionone in the essential oil from black tea. Agric Biol Chem 35:962–963

    Article  CAS  Google Scholar 

  • Ina K, Eto H (1972) High boiling compounds of neutral essential oil from tea. Agric Biol Chem 36:1027–1032

    Article  CAS  Google Scholar 

  • Ina K, Sakato Y, Fukami M (1968) Isolation and structure elucidation of theaspirone, a component of tea essential oil. Tetrahedron Lett 23:2777–2780

    Article  PubMed  Google Scholar 

  • Isoe S, Hyeon S, Sakan T (1969) Photooxygenation of carotenoids. The formation of di-hydroactinidiolide and β-ionone from β-carotene. Tetrahedron Lett 4:279–280

    Article  Google Scholar 

  • Kakjiwara T, Harada T, Hatanaka A (1975) Isolation of (Z)-2-hexenol in the leaves of “Thea sinensis” and synthesis thereof. Agric Biol Chem 39:243–244

    Article  Google Scholar 

  • Kato H, Fujimaki M (1968) Formation of N-substituted pyrrole-2-aldehydes in the browning reactions between D-xylose and amino compounds. J Food Sci 33:445–449

    Article  CAS  Google Scholar 

  • Kawashima K, Yamanishi T (1973) Thermal degradation of β-carotene. Nippon Nogei Kagaku Kaishi 47:79–83

    Article  CAS  Google Scholar 

  • Kobayashi A, Sato H, Yamanishi T (1965 a) cis-2-Penten-2-ol in the essential oil from freshly plucked tea leaves and black tea. Agric Biol Chem 29:488–489

    Article  CAS  Google Scholar 

  • Kobayashi A, Sato H, Arikawa R, Yamanishi T (1965 b) Flavor of black tea. I. Volatile organic acids. Agric Biol Chem 29:902–907

    Article  Google Scholar 

  • Kobayashi A, Sato H, Nakamura H, Ohsawa K, Yamanishi T (1966) Flavor of black tea. III. Newly identified alcohols and aldehydes. Agric Biol Chem 30:779–783

    Article  CAS  Google Scholar 

  • Lien Y, Nawar W (1974) Thermal decomposition of some amino acids. Alanine and β-ala-nine. J Food Sci 39:914–919

    Article  CAS  Google Scholar 

  • Maga J (1978) Simple phenols and phenolic compounds in food flavor. CRC Crit Rev Food Sci Nutrit 10:323–346

    Article  CAS  Google Scholar 

  • Maw G, Coyne C (1966) α-Hydroxy acids as metabolites of sulfur amino acids in yeasts. Arch Biochem Biophys 117:499–503

    Article  CAS  Google Scholar 

  • Mick W, Schreier P (1984) Additional volatiles of black tea aroma. J Agric Food Chem 32:924–929

    Article  CAS  Google Scholar 

  • Mick W, GÖtz EM, Schreier P (1984) Volatile acids of black tea aroma. Lebensm Wiss Technol 17:104–106

    CAS  Google Scholar 

  • Müggler-Chavan F, Viani R, Bricout J, Reymond D, Egli R (1966) Sur la composition de l’aróme de thé (1). Helv Chim Acta 49:1763–1767

    Article  Google Scholar 

  • Müggler-Chavan F, Viani R, Bricout J, Marion JP, Mechtler H, Reymond D, Egli R (1969) Sur la composition de l’aróme de thé (3). Identification de deux cétones apparantées aux ionones. Helv Chim Acta 52:549–550

    Article  Google Scholar 

  • Nakatani Y, Sato S, Yamanishi T (1969) S( + )-3,7-Dimethyl-l, 5, 7-octatrien-3-ol in the essential oil of black tea. Agric Biol Chem 33:967–968

    Article  CAS  Google Scholar 

  • Natarajan C, Anandaraman S, Shankaranayarana M (1974) Tea flavor. Biochem Rev 45:10–36

    CAS  Google Scholar 

  • Nykänen L, Suomalainen H (1983) Aroma of beer, wine and distilled beverages. Reidel Dordrecht

    Google Scholar 

  • Renner E, Melcher F (1978) Untersuchungen über die Minorfettsäuren des Milchfetts. Milchwissenschaft 33:281–284

    CAS  Google Scholar 

  • Renold W, Näf-Müller R, Keller U, Willhalm B, Ohloff G (1974) An investigation of the tea aroma. I. New volatile black tea constituents. Helv Chim Acta 57:1301–1308

    Article  CAS  Google Scholar 

  • Reymond D, Müggler-Chavan F, Viani R, Vuatez L, Egli R (1966) Gas Chromatographie analysis of steam volatile aroma constituents. Application to coffee, tea and cocoa aromas. J Gas Chromatogr 4:28–31

    Google Scholar 

  • Saijo R (1967 a) Volatile flavor of black tea (1). Agric Biol Chem 31:389–396

    Article  CAS  Google Scholar 

  • Saijo R (1967 b) Volatile flavor of black tea (2). Agric Biol Chem 31:1265–1269

    Article  CAS  Google Scholar 

  • Saijo R, Takeo T (1970) The formation of aldehydes from amino acids by tea leaves extracts. Agric Biol Chem 34:227–233

    Article  CAS  Google Scholar 

  • Saijo R, Takeo T (1972) The importance of linoleic acid and linolenic acid as precursors of hexanal and tr-2-hexenal in black tea. Plant Cell Physiol 13:991–998

    Google Scholar 

  • Salunkhe D, Do J (1976) Biogenesis of aroma constituents of fruit and vegetable CRC Crit Rev Food Sci Nutrit 8:161–189

    Article  CAS  Google Scholar 

  • Sanderson GW (1972) The chemistry of tea and tea manufacturing. Rec Adv Phytochem 5:247–263

    CAS  Google Scholar 

  • Sanderson GW (1975) Black tea aroma and its formation. In: Drawert F (ed) Geruch-und Geschmackstoffe. Carl, Nürnberg, pp 65–72

    Google Scholar 

  • Sanderson GW, Co H, Gonzales J (1971) Biochemistry of tea fermentation. The role of carotenes in black tea aroma formation. J Food Sci 36:231–233

    Article  CAS  Google Scholar 

  • Sato S, Sasakura S, Kobayashi A, Nakatani Y, Yamanishi T (1970) Flavor of black tea. VI. Intermediate and high boiling components of the neutral fraction. Agric Biol Chem 34:1355–1367

    Article  CAS  Google Scholar 

  • Schreier P, Mick W (1984) Analytische Differenzierung von zwei Qualitäten schwarzen Tees mittels Kapillargaschromatographie-Massenspektrometrie. Chem Mikrobiol Technol Lebensm 8:97–104 Scif R, Casey JC, Swain T (1963) The low boiling volatiles of cooked foods. Chem Ind 863

    CAS  Google Scholar 

  • Shibamoto T (1977) Formation of sulfur-and nitrogen-containing components from the reaction of furfural with hydrogen sulfide and ammonia. J Agric Food Chem 25:206–209

    Article  CAS  Google Scholar 

  • Shibamoto T, Bernhard R (1976) Effect of time, temperature, and reactant ratio on pyrazine formation in model systems. J Agric Food Chem 24:847–851

    Article  CAS  Google Scholar 

  • Shibamoto T, Bernhard R (1977) Pyrazine formation in model systems. Agric Biol Chem 41:143–147

    Article  CAS  Google Scholar 

  • Shibamoto T, Russell G (1977) A study of the volatiles isolated from a D-glucose-hydrogen sulfide — model system. J Agric Food Chem 25:109–114

    Article  CAS  Google Scholar 

  • Shigematsu H, Shibata S, Kurata T, Kato H, Fujimaka M (1977) Thermal degradation products of several Amadori compounds. Agric Biol Chem 41:2377–2382

    Article  CAS  Google Scholar 

  • Skolbeleva NI, Petrova TA, Bokuchava MA (1977) Volatiles of black tea flavor. Soobsch Akad Nauk Gruz USSR 85:437–444

    Google Scholar 

  • Suyama K, Adachi S (1980) Origin of alkyl-substituted pyridines in food flavor: formation of the pyridines from the reaction of alkanals with amino acids. J Agric Food Chem 28:546–550

    Article  CAS  Google Scholar 

  • Takei S, Sakato Y, Ohno M (1937) Odoriferous substances from green tea. IX. Carbonyl compounds of black tea oil. Bull Inst Phys Chem Res 16:773–781

    CAS  Google Scholar 

  • Takei S, Sakato Y, Ohno M (1938) Odoriferous principle of green tea. IX. Primary alcohols from the oil of black tea. Bull Inst Phys Chem Res 17:871–879

    CAS  Google Scholar 

  • Takeo T (1981) Production of linalool and geraniol by hydrolytic breakdown of bound forms in disrupted tea shoots. Phytochemistry 20:2145–2146

    Article  CAS  Google Scholar 

  • Tirimanna A, Wickremasinghe R (1966) A study of the terpenes and sterols in black tea by thin layer chromatography. Tea Q 37:134–139

    CAS  Google Scholar 

  • Tkeshelasvili C, Gogiya V (1972) Composition of organic acids of tea volatiles. Prikl Bio-chim Mikrobiol 8:956–962

    Google Scholar 

  • Tressl R, Kossa T, Renner R, KÖppler H (1976) Gaschromatographisch-massenspektro-metrische Untersuchungen über die Bildung von Phenolen und aromatischen Kohlenwasserstoffen in Lebensmitteln. Z Lebensm Unters Forsch 162:123–130

    Article  PubMed  CAS  Google Scholar 

  • Tsujimura M, Yamanishi T, Akiyama R, Tanaka S (1955) Black tea volatiles. J Agric Chem Soc Jpn 29:145–149

    CAS  Google Scholar 

  • Vitzthum OG, Werkhoff P (1976) Steam volatile aroma constituents of roasted coffee: neutral fraction. Z Lebensm Unters Forsch 160:277–284

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum OG, Werkhoff P (1978) Aroma analysis of coffee, tea and cocoa by headspace techniques. In: Charalambous G (ed) Analysis of foods and beverages — headspace techniques. Academic Press, London New York, p 115

    Google Scholar 

  • Vitzthum OG, Werkhoff P, Hubert P (1975) New volatile constituents of black tea aroma. J Agric Food Chem 23:999–1003

    Article  CAS  Google Scholar 

  • Wickremasinghe R (1974) The mechanism of operation of climatic factors in the biogenesis of tea flavor. Phytochemistry 13:2057–2063

    Article  CAS  Google Scholar 

  • Wickremasinghe R, Swain T (1965) Studies of the quality and flavour of Ceylon tea. J Sci Food Agric 16: 57–64

    Article  CAS  Google Scholar 

  • Wickremasinghe R, Wick E, Yamanishi T (1973) Gas chromatographic-mass spectromet-ric analysis of “flavory” and “non-flavory” Ceylon black tea aroma constituents prepared by two different methods. J Chromatogr 79:75–80

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Strauss C, Wilson B, Massy-Westropp R (1982) Studies in the hydrolysis of Vitis vinifera monoterpene precursor compounds and model monoterpene β-D-gluco-sides rationalizing the monoterpene composition of grapes. J Agric Food Chem 30:1219–1222

    Article  CAS  Google Scholar 

  • Yamamoto R, Itoh K (1937) Essential oil of black tea. J Agric Chem Soc Jpn 13:736–750

    CAS  Google Scholar 

  • Yamamoto R, Itoh K, Chin H (1940) Essential oil of Formosan black tea. J Agric Chem Soc Jpn 16:781–802

    CAS  Google Scholar 

  • Yamanishi T (1975) Tea aroma. Nippon Nogei Kagaku Kaishi 49:1–36

    Article  Google Scholar 

  • Yamanishi T (1981) Tea, coffee, cocoa, and other beverages. In: Teranishi R, Flath RA, Sugisawa H (eds) Flavor research — recent advances. Dekker, New York, p 231

    Google Scholar 

  • Yamanishi T, Sato H, Ohmura A (1964) Linalool epoxides in the essential oil from freshly plucked tea leaves and black tea. Agric Biol Chem 28:653–655

    Article  CAS  Google Scholar 

  • Yamanishi T, Kobayashi A, Sato H, Ohmura A, Nakamura H (1965) Flavor of black tea. II. Alcohols and carbonyl compounds. Agric Biol Chem 29:1016–1020

    Article  CAS  Google Scholar 

  • Yamanishi T, Kobayashi A, Sato H, Osawa K, Uchida A, Mori S, Saijo R (1966) Flavor of black tea aroma. IV. Changes in the flavor constituents during the manufacture of black tea. Agric Biol Chem 30:784–792

    Article  Google Scholar 

  • Yamanishi T, Kobayashi A, Nakamura H, Uchida A, Mori S, Osawa K, Sasakura S (1968) Flavor of black tea. V. Comparison of various types of black tea. Agric Biol Chem 32:379–386

    Article  CAS  Google Scholar 

  • Yamanishi T, Kita Y, Watanabe K, Nakatani Y (1972) Constituents and composition of steam volatile aroma from black tea. Agric Biol Chem 36:1153–1158

    Article  CAS  Google Scholar 

  • Yamanishi T, Kawatsu M, Yokoyama T, Nakatani Y (1973 a) Methyl jasmonate and lac-tones including jasmine lactone in Ceylon tea. Agric Biol Chem 37:1075–1078

    Article  CAS  Google Scholar 

  • Yamanishi T, Shimojo S, Ukita M, Kawashima K, Nakatani Y (1973 b) Aroma of roasted green tea (Hoji-cha). Agric Biol Chem 37:2147–2150

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreier, P. (1988). Analysis of Black Tea Volatiles. In: Linskens, HF., Jackson, J.F. (eds) Analysis of Nonalcoholic Beverages. Modern Methods of Plant Analysis, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83343-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83343-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83345-8

  • Online ISBN: 978-3-642-83343-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics