Skip to main content

Shape Models in Computer-Integrated Manufacture

  • Conference paper
Computer Integrated Manufacturing

Part of the book series: NATO ASI Series ((NATO ASI F,volume 49))

  • 194 Accesses

Abstract

Existing computer—aided manufacturing systems are based on models of shape tailored to a particular process. Computer—integrated manufacture involves many different processes, and hence requires more complete models of components or assemblies. This can be provided by solid modelling techniques extended to include extra data related to manufacture such as form features and tolerances. These developments are being applied to many manufacturing processes, from casting to assembly, but profound questions remain concerning both the structure and the use of shape models in manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.O. Anderson, ‘Detecting and eliminating collisions in numerically controlled machining’, Computer-Aided Design 10,4 (231–237), 1978.

    Article  Google Scholar 

  2. A.P. Ambler, ‘Robotics and solid modelling: a discussion of the requirements robotic applications put on solid modelling’, Proceedings of the 2nd International Symposium on Robotics Research, 1985.

    Google Scholar 

  3. F. Arbab, D.G. Cantor, L. Lichten and M.A. Melkanoff, ‘The MARS CAM-oriented modeling system’, Proceedings of a MIT Conference on CAD/CAM Technology in Mechanical Engineering (281-288), 1982.

    Google Scholar 

  4. G.T. Armstrong, G.C. Carey and A. de Pennington, ‘Numerical code generation from geometric modelling system’, in Solid Modelling by Computers (Proceedings of a General Motors Symposium, Detroit, 1983) (M.S. Pickett and J.W. Boyse, eds), Plenum (139-158), 1984.

    Google Scholar 

  5. J.T. Berry and J.A.M. Boulet, ‘The application of geometric modeling to metal casting technology#x2019;, in Solid Modelling by Computers (Proceedings of a General Motors Symposium, Detroit, 1983) (M.S. Pickett and J.W. Boyse, eds), Plenum (105-120), 1984.

    Google Scholar 

  6. C. Bell, B. Landi and M.A. Sabin, ‘The programming and use of numerical control to machine sculptured surfaces’, Proceedings of the 14th International MTDR Conference, Manchester (233-238), 1973.

    Google Scholar 

  7. P. Bézier ‘UNISURF system: principles, programme, language’, In Computer Languages for Numerical Control (J. Hatvany, ed) (Proceedings of the PROLAMAT 73 Conference, Budapest), North-Holland (417-426), 1973.

    Google Scholar 

  8. T.O Binford, R.A. Brooks and D.G. Lowe, ‘Image understanding via geometric models’, Proceedings of the Fifth International Conference on Pattern Recognition, (364-369), 1980.

    Google Scholar 

  9. Ø. Bjørke, Computer-Aided Tolerancing, Tapir, 1978.

    Google Scholar 

  10. M.S. Bloor, A. de Pennington and J.R. Woodwark, ‘POISE — pocket and island evaluator’, presented at CAM 78 Conference, Glasgow, 1978.

    Google Scholar 

  11. J.E. Bobrow, ‘NC machine tool path generation from CSG part representations’, Computer-Aided Design 17, 2 (69–76), 1985.

    Article  Google Scholar 

  12. R.C. Bolles, ‘The three-dimensional locating of industrial parts’, SRI International Technical Note 234 (Proceedings of 8th NSF Grantees’ Conference on Production Research and Technology, Stanford), 1981.

    Google Scholar 

  13. M.C. Bonney, C.A. Blunsden, K. Case and J.M. Porter, ‘Man-machine interaction in work systems’, International Journal of Production Research 17, 6 (619–629), 1979.

    Article  Google Scholar 

  14. M.C. Bonney, P.J. Edwards, J.A. Gleave, J.L. Green, R.J. Marshall and Y.F. Yong, ‘The simulation of industrial robot systems’, OMEGA International Journal of Management Science 12,3 (273–281), 1984.

    Article  Google Scholar 

  15. J.W. Boyse, ‘Interference detection among solids and surfaces’, Communications of the ACM 22,1 (3–9), 1979.

    Article  Google Scholar 

  16. C.A.J. Braganca and P. Sholl ‘VAL-II, a language for hierarchical control of a robot-based factory’, Robotica, 3 (265–272), 1985.

    Article  Google Scholar 

  17. I.C. Braid, ‘Designing with volumes: computation of weight, centre of gravity, moment of inertia and principal axes’, University of Cambridge CAD Group Document 81, 1974.

    Google Scholar 

  18. S.A. Cameron, ‘A RAPT picture—scrapbook’, University of Edinburgh Department of Artificial Intelligence Working Paper 106, 1982.

    Google Scholar 

  19. S.A. Cameron, ‘Modelling solids in motion’, PhD Thesis, University of Edinburgh, 1984.

    Google Scholar 

  20. CAM-I, ‘A study of dimensioning and tolerancing of geometric models, final report’, CAM-I Report R-84-GM02.2, 1985.

    Google Scholar 

  21. CAM-I, ‘Requirements for support of form features in a solid modelling system’, CAM-I Report R-85-ASPP-01, 1985.

    Google Scholar 

  22. CAM-I, ‘Reconciliation of design and manufacturing requirements for product design data using functional primitive part features’, CAM-I Report R-86-ANC/GM/PPP 01.1, 1986.

    Google Scholar 

  23. CAM-I, ‘A volume decomposition algorithm’, CAM-I Report R-85-ANC-01 (1 — software design, 2 — walk through), 1986.

    Google Scholar 

  24. G.C. Carey and A. de Pennington, ‘A study of the interface between CAD and CAM using geometric modelling techniques’, Proceedings of the 3rd Anglo-Hungarian Seminar on Computer-Aided Geometric Design, Cambridge, 1983.

    Google Scholar 

  25. G.C. Carey, ‘Development of an automatic tool selection technique’, Proceedings of the 4th Anglo-Hungarian Seminar on Computer Aided Design, Budapest (229-246), 1985.

    Google Scholar 

  26. B.T.F. Chan, ‘ROMAPT: a new link between CAD and CAM’, Computer-Aided Design 14, 5 (261–266), 1982.

    Article  Google Scholar 

  27. Y.K. Chan and W.A. Knight, ‘MODCON: a system for the CAM of dies and moulds’, Proceedings of the CAD-80 Conference, Brighton (370-381), 1980.

    Google Scholar 

  28. B.K. Choi, M.M. Barash and D.C. Anderson, ‘Automatic recognition of machined surface’s from a 3D solid model’, Computer-Aided Design 16, 2 (81–86), 1984.

    Article  Google Scholar 

  29. S.H. Choi, P. Sims and T.A. Dean, ‘A CAD/CAM package for forging hammer dies’, Proceedings of 25th International MTDR Conference (451-457), 1985.

    Google Scholar 

  30. P.G. Comba, ‘A procedure for detecting the intersections of three-dimensional objects’, Journal of the ACM 15, 3 (354–366), 1968.

    Article  MATH  Google Scholar 

  31. S.A. Coons and B. Herzog,’ surfaces for computer-aided aircraft design’, Proceedings of the AIAA 4th Annual Meeting and Technical Display, Anaheim (AIAA Paper 67-895), 1967.

    Google Scholar 

  32. J.H. Davenport, ‘Robot motion planning’, to appear in Proceedings of a IBM Conference on Geometric Reasoning, Winchester, 1986, OUP.

    Google Scholar 

  33. B.J. Davies, I.L. Darbyshire and A.J. Wright, ‘Expert Systems in Process Planning’, in Knowledge Engineering and Expert Systems in CAD (Alison Smith, ed), Butterworths (7-14), 1986.

    Google Scholar 

  34. K.J. Davies, GNC — a graphical NC processor’, In Computer Languages for Numerical Control (J. Hatvany, ed) (Proceedings of the PROLAMAT 73 Conference, Budapest), North-Holland (51-61), 1973.

    Google Scholar 

  35. Y. Descotte and J.C. Latombe, ‘GARI — a problem solver that plans how to machine mechanical parts’, Proceedings of ICJAI 81, Vancouver (766-771), 1981.

    Google Scholar 

  36. O.D. Faugeras and M. Herbert, ‘A 3-D recognition and positioning algorithm using geometrical matching between primitive surfaces’, Proceedings of the 8th IJCAI, Karlsruhe (997-1002), 1982.

    Google Scholar 

  37. R. Featherstone, ‘Robot dynamics algorithms’, PhD Thesis, University of Edinburgh Department of Artificial Intelligence, 1984.

    Google Scholar 

  38. A.D. Fleming ‘A representation for geometrically toleranced parts’, to appear in Proceedings of a IBM Conference on Geometric Reasoning, Winchester, 1986, OUP.

    Google Scholar 

  39. R. Fridshal, K.P. Cheng, D. Duncan and W. Zucker, ‘Numerical control part program verification system’, Proceedings of a Conference on CAD/CAM Technology in Mechanical Engineering, MIT (236-254), 1982.

    Google Scholar 

  40. I. Furth, Automated process planning, to appear in Proceedings of a NATO Advanced Study Institute on CIM, Istanbul, 1987, Springer-Verlag.

    Google Scholar 

  41. E. Galli,. ‘Proving out part moldability by computer’, Plastics Machinery and Equipment, June 1980.

    Google Scholar 

  42. H. Grabowski and M. Eigner, ‘Employing a relational database in a CAD system’, Proceedings of ITCAD 78(367–377), 1978.

    Google Scholar 

  43. A.R. Grayer, ‘The automatic production of machined components starting from a stored geometric description’, in Advances in Computer-Aided Manufacture (D. McPherson, ed), North-Holland (Proceedings of the PROLAMAT 76 Conference, Stirling (137-145), 1977.

    Google Scholar 

  44. A.R. Grayer, ‘Geometric modelling in production’, in Advanced Manufacturing Technology (P. Blake, ed), North-Holland (55-69 and 263-269), 1980.

    Google Scholar 

  45. W.E.L. Grimson and T. Lozano-Perez, ‘Model based recognition from sparse range or tactile data’, International Journal of Robotics Research 3, 3, 1984.

    Google Scholar 

  46. M.R. Henderson and D.C. Anderson, ‘Computer recognition and extraction of form features’, Computers in Industry 5 (329–339), 1984.

    Article  Google Scholar 

  47. R.C. Hillyard and I.C. Braid ‘Analysis of dimensions and tolerances in computer-aided mechanical design’, Computer-Aided Design 10, 3 (161–166), 1978.

    Article  Google Scholar 

  48. S.W. Holland, L. Rossol and M.R. Ward, ‘Consight-I: a vision controlled robot system for transferring parts from belt conveyors’, General Motors Research Laboratories Research Report GMR-2790, 1978.

    Google Scholar 

  49. W.A. Hunt and H.B. Voelcker, ‘An exploratory study of automatic verification of programs for numerically controlled machine tools’, University of Rochester Production Automation Project Technical Report TM-34, 1982.

    Google Scholar 

  50. R. Jakubowski, ‘Syntactic characterization of machine parts shapes’, Cybernetics and Systems 13 (1–24), 1982.

    Article  Google Scholar 

  51. G.E.M. Jared, ‘Feature recognition in geometric modelling’, Proceedings of the 4th Anglo-Hungarian Seminar on Computer Aided Design, Budapest (23-33), 1985.

    Google Scholar 

  52. A.R. Johnson and D.P. Sturge, ‘The DUCT system of design and manufacture for patterns moulds and dies’, Proceedings of the 20th International MTDR Conference, Birmingham (17-20), 1979.

    Google Scholar 

  53. S. Kawabe, F. Kimura and T. Sata, ‘Automatic generation of NC commands for 3-coordinate measuring machine’ Proceedings of the International Conference on Production Engineering (941-946), 1980.

    Google Scholar 

  54. A. Kela, H.B. Voelcker and J.A. Goldak, ‘Automatic generation of hierarchical, spatially addressable finite-element meshes from CSG representations of solids’, Proceedings of an International Conference on Accuracy Estimation and Adaptive Refinements in Finite Element Computation (ARFEC), Lisbon, 1984.

    Google Scholar 

  55. J. Knapman, ‘3D model identification from stereo data’, Proceedings of the 1st International Conference on Computer Vision, London, 1987.

    Google Scholar 

  56. L. Kyprianou,’ shape classification in computer-aided design’, PhD Thesis, University of Cambridge, 1980.

    Google Scholar 

  57. Y.T. Lee and A.A.G. Requicha, ‘Algorithms for computing the volume and other integral properties of solids’, Communications of the ACM 25,9 (Part 1: 635-641, Part 2: 642-650), 1982.

    Google Scholar 

  58. E.C. Libardi, J.R. Dixon and M.K. Simmons, ‘Designing with features: design and analysis of extrusions as an example’, Proceedings of ASME Spring National Design Engineering Conference, Chicago, 1986.

    Google Scholar 

  59. L.I. Lieberman and M.A. Wesley, ‘AUTOPASS: an automatic programming system for computer controlled mechanical assembly’ IBM Journal of Research and Development 21, 4 (321–333), 1977.

    Article  Google Scholar 

  60. T. Lozano-Perez and M.A. Wesley, ‘An algorithm for planning collision-free paths among polyhedral obstacles’, Communications of the ACM 22, 10 (569–570), 1979.

    Article  Google Scholar 

  61. T. Lozano-Perez, ‘Automatic planning of manipulator transfer movements’, IEEE Transactions on Systems, Man and Cybernetics SMC-11,10, 1981.

    Google Scholar 

  62. S.C. Luby, J.R. Dixon and M.K. Simmons ‘Creating and uing a feature data base’, Computers in Mechanical Engineering (25-33), November 1986.

    Google Scholar 

  63. K. Marciniak, ‘Influence of surface shape on admissible tool positions in 5-axis milling’, Computer-Aided Design 19, 5 (233–244), 1987.

    Article  MATH  Google Scholar 

  64. M.T. Mason, ‘Mechanics and Planning of Manipulator Pushing Operations’, International Journal of Robotics Research 5, 1, 1986.

    Google Scholar 

  65. P. McGoldrick and R. Gibson, ‘NC plotting made simple’, Numerical Engineering 1, 4, 1980.

    Google Scholar 

  66. A. Meier, ‘Applying relational database techniques to solid modelling’, Computer-Aided Design, 18, 6 (319–326), 1986.

    Article  Google Scholar 

  67. M.E. Mortenson, Geometric Modelling, John Wiley, 1985.

    Google Scholar 

  68. J. Owen and M.S. Bloor, ‘Neutral formats for product data exchange: the current situation’, Computer-Aided Design, 19, 8 (436–443), 1987.

    Article  Google Scholar 

  69. J. Pejlare,’ Cadric — Calculation of drilling co-ordinates’, In Computer languages for Numerical Control (J. Hatvany, ed) (Proceedings of the PROLAMAT 73 Conference, Budapest), North Holland (221-225), 1973.

    Google Scholar 

  70. H. Persson,’ NC machining of arbitrarily shaped pockets’, Computer-Aided Design 10, 3 (169–174), 1978.

    Article  Google Scholar 

  71. M.S. Pickett, R.B. Tilove and V. Shapiro, ‘RoboTeach: An off-line robot programming system based on GMSolid’, in Solid Modelling by Computers (Proceedings of a General Motors Symposium, Detroit, 1983) (M.S. Pickett and J.W. Boyse, eds), Plenum (159-184), 1984.

    Google Scholar 

  72. R.J. Popplestone, A.P. Ambler and I. Bellos,’ RAPT: a language for describing assemblies’, The Industrial Robot (131-137), September 1978.

    Google Scholar 

  73. M.J. Pratt,’ solid modeling and the interface between design and manufacture’, IEEE Computer Graphics and Applications (52-59), July 1984.

    Google Scholar 

  74. M.J. Pratt, ‘Current status of form features research in solid modelling’, in preparation.

    Google Scholar 

  75. P. Quarendon and J.R. Woodwark, ‘The model for graphics’, in Techniques for Computer Graphics (D.F. Rogers and R.A. Earnshaw, eds) (Proceedings of a NATO Advanced Study, Institute, Stirling, 1986), Springer-Verlag (39-64), 1987.

    Google Scholar 

  76. A.A.G. Requicha, ‘Representations of rigid solids, theory, methods and systems’, ACM Computing Surveys 12, 4 (437–464), 1980.

    Article  Google Scholar 

  77. A.A.G. Requicha, ‘Representation of tolerances in solid modelling: issues and alternative approaches’, in Solid Modelling by Computers (Proceedings of a General Motors Symposium, Detroit, 1983) (M.S. Pickett and J.W. Boyse, eds), Plenum (3-22), 1984.

    Google Scholar 

  78. D.T. Ross, ‘The design and use of the APT language for automatic programming of numerically controlled machine tools’, Proceedings of the Computer Applications Symposium, Chicago (80-99), 1959.

    Google Scholar 

  79. M.A. Sabin, ‘An existing system in the aircraft industry. The British Aircraft Corporation Numerical Master geometry system’, Proceedings of the Royal Society of London A 321 (197–205), 1971.

    Article  Google Scholar 

  80. M.A. Sabin,’ A research programme in CAE’, Computer-Aided Engineering Journal 4, 2 (79–82), 1987.

    Article  Google Scholar 

  81. P.J. Sackett and J.R. Woodwark, ‘Computer aided plant layout appraisal’, Proceedings of the 12th International Symposium on Production Management in the Metalworking Industry, Belgrade (353-363), 1983.

    Google Scholar 

  82. G. Spur and H.-J. Germer, ‘Three-dimensional solid modelling capabilities of the COMPAC system and some applications’, Proceedings of the ACM CAE82 Workshop in Geometric Modelling, Milan, 1982.

    Google Scholar 

  83. R. Srinivasan and C.R. Lin ‘Evolutionary trends in generative process planning’, in Methods and Tools for Computer Integrated Manufacturing (Notes for CREST course CIM 83) (U. Rembold and R. Dillman, eds), Springer-Verlag (179-193), 1984.

    Google Scholar 

  84. T.W. Stacey and A.E. Middleditch, ‘The geometry of machining for computer-aided manufacture’, Robotica 4 (83–91), 1986.

    Article  Google Scholar 

  85. M. Staley, M.R. Henderson and D.C. Anderson, ‘Using syntactic pattern recognition to extract feature information from a solid geometric data base’, Computers in Mechanical Engineering (61-66), September 1983.

    Google Scholar 

  86. K.G. Swift, ‘A computer-based design consultation system’, Assembly Automation (151-154), August 1983.

    Google Scholar 

  87. K.G. Swift, Knowledge-Based Design for Manufacture, Kogan-Page, 1987.

    Google Scholar 

  88. V.A. Tipnis, S.A. Vogel and H.L Gegel, ‘Economic models for process planning’, Proceedings of the Sixth North American Metalworking Research Conference, Gainesville, Florida (379-387), 1978.

    Google Scholar 

  89. S. Ulfsby, S. Meen and J. Oian, ‘TORNADO: a DBMS for CAD/CAM systems’, in File structures and data bases for CAD (J. Encarnacao and F. Krause, eds), North-Holland (335-350), 1982.

    Google Scholar 

  90. M. Vaghul, G.E. Zinsmeister, J.R. Dixon and M.K. Simmons, ‘Expert systems in a CAD environment’, Proceedings of the ASME Spring Design Engineering Conference, Boston, 1985.

    Google Scholar 

  91. A.F. Wallis and J.R. Woodwark, ‘Creating large solid models for NC toolpath verification’, Proceedings of the CAD-84 Conference, Brighton (236-243), 1984.

    Google Scholar 

  92. A.F. Wallis and J.R. Woodwark, ‘Interrogating solid models’, Proceedings of the CAD-84 Conference, Brighton (236-243), 1984.

    Google Scholar 

  93. K.K. Wang and P. Khullar, ‘Computer-aided design of injection molds using TIPS-1 system’, Proceedings of the CAM-I International Spring Seminar, Denver (35-46), 1980.

    Google Scholar 

  94. W.-P. Wang and K.K. Wang, ‘Real-time verification of multiaxis NC programs with raster graphics’, Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco (166-171), 1986.

    Google Scholar 

  95. W.-P. Wang and K.K. Wang, ‘Geometric modeling for swept volume of moving solids’, IEEE Computer Graphics and Applications, (8-17), December 1986.

    Google Scholar 

  96. M.A. Wesley, T. Lozano-Perez, L.I. Lieberman, M.A. Lavin and D.D. Grossman, ‘A geometric modelling system for automated mechanical assembly’, IBM Journal of Research and Development 24,1 (64–74), 1980.

    Article  Google Scholar 

  97. R.N. Wolfe, ‘3D geometric databases for mechanical engineering’, IBM Thomas J. Watson Research Center Report RC7655, 1979.

    Google Scholar 

  98. T.C. Woo, ‘Computer-aided recognition of volumetric designs — CARVD’, In Computer languages for numerical control, (J. Hatvany, ed) (Proceedings of the PROLAMAT 73 Conference, Budapest), North-Holland (121-135), 1973.

    Google Scholar 

  99. J.R. Woodwark, Computing Shape, Butterworths, 1986.

    Google Scholar 

  100. J.R. Woodwark,’ some speculations on feature recognition’, to appear in Proceedings of an International Workshop on Geometric Reasoning, Oxford, 1986, (to be published as a special issue of Journal of Artificial Intelligence).

    Google Scholar 

  101. J.R. Woodwark, ‘Blends in geometric modelling’, to appear in Proceedings of 2nd IMA Conference on the Mathematics of surfaces’, Cardiff, 1986.

    Google Scholar 

  102. B. Wordenweber, ‘Finite element mesh generation’, Computer-Aided Design 16, 5 (285–291), 1984.

    Article  Google Scholar 

  103. I. Yellowley, A. Wong and B. DeSmit, ‘The economics of peripheral milling’, Proceedings of the Sixth North American Metalworking Research Conference, Gainesville, Florida (388-394), 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woodwark, J.R. (1988). Shape Models in Computer-Integrated Manufacture. In: Turksen, I.B., Asai, K., Ulusoy, G. (eds) Computer Integrated Manufacturing. NATO ASI Series, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83590-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83590-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83592-6

  • Online ISBN: 978-3-642-83590-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics