Skip to main content

Physiological Criteria in Screening and Breeding

  • Chapter
Soil Mineral Stresses

Part of the book series: Monographs on Theoretical and Applied Genetics ((GENETICS,volume 21))

Abstract

The great majority of plant improvements to date has been achieved on the basis of characteristics which can be clearly seen (e.g. shape and size) or which can be quantified directly (e.g. yield). So why might it be necessary to consider physiological characteristics which are not visible, and why is it necessary to measure anything other than yield, which is, after all, the prime objective? Breeding plants for problem soils, and indeed for tolerance to many environmental stresses, presents situations in which visible plant characteristics do not provide sufficient information for the plant breeder and in which yield is not an efficient index of the potential of parent lines. The purpose of this chapter is to examine the reasons for this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbar M (1986) Breeding for salinity tolerance in rice. In: IRRI (ed) Salt–affected soils of Pakistan, India and Thailand. International Rice Research Institute, Manila, Philippines, pp 39–63

    Google Scholar 

  • Bandyopadhyay AK (1988) Performance of some acid tolerant rice varieties in two acid saline soils of Sunderbans. Int Rice Res Newsl 13 (3): 19

    Google Scholar 

  • Bender J, Tingey DT, Jager HJ, Rodecap KD, Clark CS (1991) Physiological and biochemical responses of bush bean ( Phaseolus vulgaris) to ozone and drought stress. J Plant Physiol 137: 565–570

    Google Scholar 

  • Besford RT (1978) Effect of replacing nutrient potassium by sodium on uptake and distribution of sodium in tomato plants. Plant Soil 58: 427–432

    Article  Google Scholar 

  • Bhattacharya NC, Hileman DR, Ghosh PP, Musser RL, Bhattacharya S, Biswas PK (1990) Interaction of enriched C02 and water stress on the physiology of and biomass production in sweet potato grown in open-top chambers. Plant Cell Environ 13: 933–940

    Article  CAS  Google Scholar 

  • Blum A (1989) Breeding methods for drought resistance. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 197–216

    Chapter  Google Scholar 

  • Blum A, Mayer J, Golan G (1988) The effect of grain number per ear (sink size) on source

    Google Scholar 

  • activity and its water-relations in wheat. J Exp Bot 39: 106–114

    Google Scholar 

  • Blum A, Ramaiah S, Kanemasu ET, Paulsen GM (1990) The physiology of heterosis in Sorghum with respect to environmental stress. Ann Bot 65: 149–158

    Google Scholar 

  • Boursier P, Lauchli A (1989) Mechanisms of chloride partitioning in the leaves of salt-stressed Sorghum bicolor L. Physiol Plant 77: 537–544

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 132: 356–361

    CAS  Google Scholar 

  • Castro-Jimenez Y, Newton RJ, Price HJ, Halliwell RS (1989) Drought stress responses of Microseris species differing in nuclear DNA content. Am J Bot 76: 789–795

    Article  Google Scholar 

  • Condon AG, Richards RA, Farquhar GD (1987) Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field–grown wheat. Crop Sci 27: 996–1001

    Article  Google Scholar 

  • Cuartero J, Yeo AR, Flowers TJ (1992) Selection of donors for salt tolerance in tomato using physiological traits. New Phytol 121: 63–69

    Article  CAS  Google Scholar 

  • Cutler JM, Rains DM, Loomis RS (1975) The importance of cell size in the water relations of plants. Plant Physiol 40: 255–260

    Google Scholar 

  • Devine TE (1982) Genetic fitting of crops to problem soils. In: Christiansen MN, Lewis CF (eds) Breeding plants for less favourable environments. Wiley, New York, pp 143–174

    Google Scholar 

  • Erdei L, Trivedi S, Takeda K, Matsumoto H (1990) Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat varieties differing in salt and drought tolerance. J Plant Physiol 137: 165–168

    CAS  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11: 539–552

    Article  CAS  Google Scholar 

  • Farquhar GD, Wong SC, Evans JR, Hubick KT (1989) Photosynthesis and gas exchange. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 47–70

    Chapter  Google Scholar 

  • Finch RP, Slamer IH, Cocking EC (1990) Production of heterokaryones by the fusion of mesophyll protoplasts of Porteresia coarctata and cell suspension-derived protoplasts of Oryza sativa: a new approach to somatic hybridisation in rice. J Plant Physiol 136: 592–598

    Google Scholar 

  • Flowers TJ, Dalmond D (1992) Protein synthesis in halophytes: the influence of potassium, sodium and magnesium in vitro. Plant Soil 146: 153–161

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice varieties. New Phytol 88: 363–373

    Article  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28: 89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Hagibagheri MA, Clipson NCW (1986) Halophytes. Q Rev Biol 61: 313–337

    Article  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Leach RP, Rogers WJ, Yeo AR (1989) Salt tolerance in the halophyte Suaeda maritima. In: Tazawa M, Katsumi M, Masuda Y, Okamoto H (eds) Plant water relations and growth under stress. Yamada Science Foundation, Osaka, pp 173–180

    Google Scholar 

  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14: 319–325

    Article  Google Scholar 

  • Gorham J, Hardy CA, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74: 584–588

    Article  CAS  Google Scholar 

  • IRRI (1976) Standard evaluation system for rice. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1982) Drought resistance in crop plants with emphasis on rice. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Jacoby B (1965) Sodium retention in excised bean stems. Physiol Plant 18: 730–739

    Article  CAS  Google Scholar 

  • Jones HG (1978) Screening for tolerance of photosynthesis to osmotic and saline stress using rice leaf–slices. Photosynthetica 13: 9–14

    Google Scholar 

  • Jones MP, Wilkins DA (1984) Screening for salinity tolerance by rapid generation advance. Int Rice Res Newsl 9: 9–10

    Google Scholar 

  • Kuiper PJC (1985) Environmental changes and lipid metabolism of higher plants. Physiol Plant 64: 118–122

    Article  CAS  Google Scholar 

  • Lauchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants; strategies for crop improvement. Wiley, New York, pp 171–187

    Google Scholar 

  • Leigh RA, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97: 1–13

    Article  CAS  Google Scholar 

  • Lewis OAM, Leidi EO, Lips SH (1989) Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytol 111: 155–160

    Article  CAS  Google Scholar 

  • Malan C, Greyling MM, Gressel J (1990) Correlation between CuZn superoxide and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69: 157–166

    Article  CAS  Google Scholar 

  • Malcolm CV (1983) Wheatbelt salinity, a review of the salt land problem of Southwestern Australia. Western Australian Department of Agriculture, Perth

    Google Scholar 

  • Marassi JE, Collado M, Benavidez R, Arturi MJ, Marassi JJN (1989) Performance of selected rice genotypes in alkaline, saline, and normal soils and their interaction with climate factors. Int Rice Res Newsl 14 (6): 10

    Google Scholar 

  • McCree KJ (1986) Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Aust J Plant Physiol 13: 33–43

    Article  Google Scholar 

  • Mengel K, Geurtzen G (1988) Relationship between iron chlorosis and alkalinity in Zea mays. Physiol Plant 72: 460–465

    Article  CAS  Google Scholar 

  • Morgan JM (1983) Osmoregulation as a selection criterion for drought tolerance in wheat. Aust J Agric Res 34: 607–614

    Article  Google Scholar 

  • Morgan JM (1988) The use of coleoptile response to water stress to differentiate wheat genotypes for osmoregulation, growth and yield. Ann Bot 62: 193–198

    Google Scholar 

  • Munns R (1988) Why measure osmotic adjustment? Aust J Plant Physiol 15: 717–726

    Article  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13: 143–160

    Article  Google Scholar 

  • Navari-Izzo F, Izzo R, Bottazzi F, Ranieri A (1988) Effects of water stress and salinity on sterols in Zea mays roots. Phytochemistry 27: 3109–3115

    Article  CAS  Google Scholar 

  • Oertli J J (1968) Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica 12: 461–469

    Google Scholar 

  • Passioura JB (1983) Roots and drought resistance. Agric Water Manage 7: 265–280

    Article  Google Scholar 

  • Passioura JB (1986) Resistance to drought and salinity: avenues for improvement. Aust J Plant Physiol 13: 191–201

    Article  Google Scholar 

  • Poehlman JM (1987) Breeding field crops. Van Nostrand Reinhold, New York Richards RA (1983) Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32: 431–438

    Google Scholar 

  • Rush DW, Epstein E (1981) Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domestic tomato. J Am Soc Hortic Sci 106: 699–704

    Google Scholar 

  • Sharp RE, Davies WJ (1989) Regulation of growth and development in plants growing with a restricted supply of water. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Cambridge University Press, Cambridge, pp 71–94

    Chapter  Google Scholar 

  • Smith RCG, Prathapar SA, Barrs HD (1989) Use of a thermal scanner image of a water stressed crop to study soil variability. Remote Sens Environ 29: 111–120

    Article  Google Scholar 

  • Spitters CJT, Schapendonk AHCM (1990) Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant Soil 123: 193–203

    Article  Google Scholar 

  • Stelzer R (1981) Ion localisation in the leaves of Puccinellia peisonis. Z Pflanzenphysiol 103: 27–36

    CAS  Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Kumar Rao JVDK (1990) Physiological basis of differences in salinity tolerance of pigeonpea and its related wild species. J Plant Physiol 137: 64–71

    CAS  Google Scholar 

  • Termaat A, Passioura JB, Munns R (1985) Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley. Plant Physiol 77: 869–872

    Article  PubMed  CAS  Google Scholar 

  • Turner NC, Passioura JB (eds) (1986) Plant growth, drought and salinity. CSIRO, Melbourne

    Google Scholar 

  • Vasque-Tello Y, Zuily-Fodil Y, Thi ATP, De Silva JBV (1990) Electrolyte and Pi leakages and soluble sugar content as physiological tests for screening resistance to water stress in Phaseolus and Vigna species. J Exp Bot 41: 827–838

    Article  Google Scholar 

  • Wilson D (1984) Identifying and exploiting genetic variation in the physiological components of production. Ann Appl Biol 104: 527–536

    Article  Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58: 214–222

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1982) Accumulation and localisation of sodium ions within the shoots of rice varieties differing in salinity resistance. Physiol Plant 56: 343–348

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice ( Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13: 161–173

    Google Scholar 

  • Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38: 1141–1153

    Article  CAS  Google Scholar 

  • Yeo AR, Yeo ME, Flowers TJ (1988) Selection of lines with high and low sodium transport from within varieties of an inbreeding species; rice ( Oryza sativa L. ). New Phytol 110: 13–19

    Google Scholar 

  • Yeo AR, Yeo ME, Flowers SA, Flowers TJ (1990) Screening of rice ( Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet 79: 377–384

    Google Scholar 

  • Yeo AR, Lee K-S, Izard P, Boursier PJ, Flowers TJ (1991) Short-and long-term effects of salinity on leaf growth in rice ( Oryza sativa L. ). J Exp Bot 42: 881–889

    Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Zhang J, Davies WJ (1990) Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ 13: 227–285

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeo, A.R. (1994). Physiological Criteria in Screening and Breeding. In: Yeo, A.R., Flowers, T.J. (eds) Soil Mineral Stresses. Monographs on Theoretical and Applied Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84289-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84289-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84291-7

  • Online ISBN: 978-3-642-84289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics