Skip to main content

Axial Crack Propagation and Arrest in Pressurized Fuselage

  • Conference paper
Structural Integrity of Aging Airplanes

Part of the book series: Springer Series in Computational Mechanics ((SSCMECH))

Summary

The rapid crack propagation, crack curving and arrest mechanisms associated with a pressurized, thin-walled ductile steel tubes are used to develop a model of axial rupture of an aircraft fuselage. This model is used to replicate axial crack propagation along a line of multi-site damage (MSD) and crack curving and arrest near a tear strap of an idealized fuselage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folias, E.S.; A Finite Line Crack in a Pressurized Cylindrical Shell. Intl. J. of Fracture Mechanics. 1 (Jun. 1965) 104–113.

    Google Scholar 

  2. Erdogan, F.; Kibler, J.J.; Cylindrical and Spherical Shells with Cracks. Intl. J. of Fracture Mechanics. 5 (Sept. 1969) 229–236.

    Google Scholar 

  3. Ramulu, M.; Kobayashi, A.S.; Kang, B.S.-J.; Dynamic Crack Curving and Branching in Line-Pipe. ASME J. of Pressure Vessel Technology. 104 (1982) 317–322.

    Article  Google Scholar 

  4. Hahn, G.T.; Sarrate, M.; Rosenfield, A.R.; Criteria for Crack Extension in Cylindrical Pressure Vessels. Intl. J. of Fracture Mechanics. 5 (1969) 187–210.

    Google Scholar 

  5. Maxey, W.A.; Dynamic Crack Propagation in Line Pipe. Proc. of Intl. Conf. on Analytical and Experimental Fracture Mechanics. Sijthoff and Noordhoff (1980) 109–223.

    Google Scholar 

  6. Freund, L.B.; Parks, D.M.; Analytical Interpretation of Running Ductile Fracture Experiments in Gas Pressurized Linepipe. Crack Arrest Methodology and Applications. Hahn/Kanninen eds. ASTM STP 711 (1980) 359–378.

    Google Scholar 

  7. Kobayashi, A.S.; Emery, A.F.; Love, W.J.; Chao, Y.H.; Johannsoh, O.; Crack Bifurcation and Arrest in Pressurized Pipe. Fracture Mechanics: Nineteenth Symposium. ASTM STP 969 (1988) 441–465.

    Google Scholar 

  8. Kobayashi, A.S.; Emery, A.F.; Love, W.J.; Chao, Y.H.; Subsize Experiments and Numerical Modelling of Axial Rupture of Gas Transmission Lines. ASME Pressure Vessel Technology. 110 (May 1988) 155–160.

    Google Scholar 

  9. Shoemaker, A.K.; McCartney, R.F.; Displacement Consideration for a Ductile Propagating Fracture in a Line Pipe. ASME Journal of Engineering Materials Technology. 96 ((1974) 318–322.

    Article  Google Scholar 

  10. Urednicek, M.; Control of Ductile Fracture Propagation in Large Diameter Gas Transmission Pipelines. ASME Winter Annual Meeting Preprint. 83-WA/PVP-11 (November 1983).

    Google Scholar 

  11. Freund, L.G.; Parks, D.M.; Rice, J.R.; Running Ductile Fracture in a Pressurized line Pipe. Mechanics of Crack Growth. ASTM STP 590 (1976) 243–262.

    Google Scholar 

  12. Freund, L.B.; Li, V.C.F.; Parks, D.M.; An Analysis of a Wire-Wrapped Mechanical Crack Arrester for Pressurized Pipelines. ASME J. of Pressure Vessel Technology. 101 (Feb. 1979) 51–58.

    Article  Google Scholar 

  13. Ramulu, M.; Kobayashi, A.S.; Dynamic Crack Curving — A Photoelastic Evaluation. Experimental Mechanics. 23 (March 1983) 1–9.

    Article  Google Scholar 

  14. Ramulu, M.; Kobayashi, A.S.; Kang, B.S.-J.; Dynamic Crack Branching — A Photoelastic Evaluation. Fracture Mechanics: Fifteen Symposium. Ed. by R. J. Sanford. ASTM STP 833 (1984) 130–148.

    Google Scholar 

  15. Streit, R: Finnie, I.; An Experimental Investigation of crack Path Directional Stability. Experimental Mechanics. 20 (January 1980) 17–23.

    Article  Google Scholar 

  16. Ramulu, M.; Kobayashi, A.S.; Kang, B.S.-J.; Dynamic Crack Curving and Branching in Line-Pipe. ASME Journal of Pressure Vessel Technology. 104 (November 1982) 317–322.

    Article  Google Scholar 

  17. Bromo, F.; Bramante, M.; Spedaletti, M.; Ductile Fracture Propagation in Pipelines: Results of Instrumented Full-Scale Burst Tests on 48″ and 56″ Diametral Pipes for gas Transmission. Analytical and Experimental Fracture Mechanics. G.C. Sih and M. Mirahik eds. Sijthoff and Noordhoff (1980) 567-578.

    Google Scholar 

  18. Kobayashi, A.S.; Engstrom, W.L.; Transient Analysis in Fracturing Aluminum Plate. Proc. of JSME 1967 Semi-International Symposium (1987) 172–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Kosai, M., Kobayashi, A.S. (1991). Axial Crack Propagation and Arrest in Pressurized Fuselage. In: Atluri, S.N., Sampath, S.G., Tong, P. (eds) Structural Integrity of Aging Airplanes. Springer Series in Computational Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84364-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84364-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84366-2

  • Online ISBN: 978-3-642-84364-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics