Skip to main content

Alterations in Gastrointestinal Barrier Function in Sepsis: The Effect of Lipopolysaccharide on Mucosal Permeability to Hydrophilic Solutes

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1992

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1992))

  • 183 Accesses

Abstract

Structure and Function of Intestinal Intercellular Tight Junctions The epithelium of the gut serves as a barrier limiting the systemic absorption of intraluminal microbes and microbial products. It has been hypothesized, but certainly not proven conclusively, that derangements in the barrier function of the gut predispose critically ill patients to the development of bacteremia, fungemia, and/ or endotoxemia [1-3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilmore DW, Smith RJ, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang XD (1988) The gut: a central organ after surgical stress. Surgery 104:917–923

    PubMed  CAS  Google Scholar 

  2. Fink MP (1990) Leaky gut hypothesis: a historical perspective. Crit Care Med 18:579–580

    Article  PubMed  CAS  Google Scholar 

  3. Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125:403–404

    Article  PubMed  CAS  Google Scholar 

  4. Madara JL (1989) Loosening of tight junctions: lessons from the intestine. J Clin Invest 83:1089–1094

    Article  PubMed  CAS  Google Scholar 

  5. Madara JL, Dharmsathaphorn K (1985) Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol 101:2124–2133

    Article  PubMed  CAS  Google Scholar 

  6. Madara JL (1983) Increases in guinea pig small intestinal resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure. J Cell Biol 97:125–136

    Article  PubMed  CAS  Google Scholar 

  7. Kingham JGC, Whorwell PJ, Loehry CA (1976) Small intestine permeability. I. Effect of ischemia and exposure to acetyl salicyiate. Gut 17:354–361

    CAS  Google Scholar 

  8. Madara JL, Stafford J, Barenberg D, Carlson S (1988) Functional coupling of tight junctions and microfilaments in T84 monolayers. Am J Physiol 254:416–423

    Google Scholar 

  9. Tagesson C, Sjodahl R, Thoren B (1978) Passage of molecules through the wall of the gastrointestinal tract. I. A simple experimental model. Scand J Gastroenterol 13:519–524

    Article  PubMed  CAS  Google Scholar 

  10. Udall JN, Pang K, Fritze L, Kleinman R, Walker WA (1981) Development of gastro-intesti-nal mucosal barrier. I. The effect of age on intestinal permeability to macromolecules. Pediatric Res 15:241–244

    CAS  Google Scholar 

  11. D’Inca R, Ramage JK, Hunt RH, Perdue MH (1990) Antigen-induced mucosal damage and restitution in the small intestine of the immunized rat. Int Arch Allergy Appl Immunol 91:270–277

    Article  PubMed  Google Scholar 

  12. Fink MP, Antonsson JB, Wang H, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs: mesenteric hypoperfusion as an etiologic factor. Arch Surg 126:211–218

    Article  PubMed  CAS  Google Scholar 

  13. Fink MP, Kaups KL, Wang H, Rothschild HR (1991) Maintenance of superior mesenteric arterial perfusion prevents increased intestinal mucosal permeability in endotoxic pigs. Surgery 110:154–161

    PubMed  CAS  Google Scholar 

  14. Bulkley GB, Kvietys PR, Parks DA, Perry MA, Granger DN (1985) Relationship of blood flow and oxygen consumption to ischemic injury in canine small intestine. Gastroenterology 89:852–857

    PubMed  CAS  Google Scholar 

  15. Clark ES, Crissenger KD, Granger DN (1990) Oxidant-induced increases in mucosal permeability in developing piglets. Pediatric Res 28:28–30

    Article  CAS  Google Scholar 

  16. Deitch EA, Specian RD, Berg RD (1991) Endotoxin-induced bacterial translocation and mucosal permeability: Role of xanthine oxidase, complement activation, and macrophage products. Crit Care Med 19:785–791

    Article  PubMed  CAS  Google Scholar 

  17. Ziegler TR, Smith RJ, O’Dwyer ST, Demling RH, Wilmore DW (1988) Increased intestinal permeability associated with infection in burn patients. Arch Surg 123:1313–1319

    Article  PubMed  CAS  Google Scholar 

  18. O’Dwyer ST, Michie HR, Ziegler TR, Revhaug A, Smith RJ, Wilmore DW (1988) A single dose of endotoxin increases intestinal permeability in healthy humans. Arch Surg 123:1459–1464

    Article  PubMed  Google Scholar 

  19. Walker RI, Porvaznik MJ (1978) Disruption of the permeability barrier (zonula occludens) between intestinal epithelial cells by lethal doses of endotoxin. Infect Immun 21:655–658

    PubMed  CAS  Google Scholar 

  20. Alexander JW, Boyce ST, Babcock GF et al. (1990) The process of microbial translocation. Ann Surg 212:496–512

    Article  PubMed  CAS  Google Scholar 

  21. Hinshaw DB, Armstrong BC, Burger JM, Beals TF, Hyslop PA (1988) ATP and microfila-ments in cellular oxidant injury. Am J Pathol 132:479–488

    PubMed  CAS  Google Scholar 

  22. Hinshaw DB, Burger JM, Armstrong BC, Hyslop PA (1989) Mechanism of endothelial cell shape change in oxidant injury. J Surg Res 46:339–349

    Article  PubMed  CAS  Google Scholar 

  23. Hinshaw DB, Armstrong BC, Beals TF, Hyslop PA (1988) A cellular model of endothelial cell ischemia. J Surg Res. 44:527–537

    Article  PubMed  CAS  Google Scholar 

  24. Zager RA (1991) Adenine nucleotide changes in kidney, liver, and small intestine during different forms of ischemic injury. Circ Res 68:185–196

    PubMed  CAS  Google Scholar 

  25. Whitworth PW, Cryer HM, Garrison RN, Baumgarten TE, Harris PD (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live escherichia coli sepsis in rats. Circ Shock 27:111–122

    PubMed  CAS  Google Scholar 

  26. Fink MP, Cohn SM, Lee PC et al. (1989) Effect of lipopolysaccharide on intestinal intramu-cosal hydrogen ion concentration in pigs: evidence of gut ischemia in a normodynamic model of septic shock. Crit Care Med 17:641–646

    Article  PubMed  CAS  Google Scholar 

  27. Fink MP, Rothschild HR, Deniz YF, Wang H, Lee PC, Cohn SM (1989) Systemic and mesenteric O2 metabolism in endotoxic pigs: Effect of ibuprofen and meclofenamate. J Appl Physiol 67:1950–1957

    PubMed  CAS  Google Scholar 

  28. Navaratnam NRL, Morris SE, Traber DL et al. (1991) Endotoxin (LPS) increases mesenteric vascular resistance (MVR) and bacterial translocation (BT). J Trauma 30:1104–1115

    Article  Google Scholar 

  29. Mosenthal AC, Wang H, Bellelsle JM et al. (1991) Mesenteric hypoperfusion and decreasedmucosal ATP in porcine endotoxicosis. Surg Forum 42:39–41

    Google Scholar 

  30. Falk A, Myrvold HE, Lundgren O, Haglund U (1982) Mucosal lesions in the feline smallintestine in septic shock. Circ Shock 9:27–35

    PubMed  CAS  Google Scholar 

  31. Falk A, Redfors S, Myrvold H, Haglund U (1985) Small intestinal mucosal lesions in feline septic shock: A study on the pathogenesis. Circ Shock 17:327–337

    PubMed  CAS  Google Scholar 

  32. Schaefer CF, Lerner MR, Biber B (1991) Dose-related reduction of intestinal cytochrome a, a3induced by endotoxin in rats. Circ Shock 33:17–25

    PubMed  CAS  Google Scholar 

  33. Chaudry IH, Wichterman KA, Baue AE (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery 85:205–211

    PubMed  CAS  Google Scholar 

  34. Hampton WA, Townsend MC, Haybron DM, Shirmer WJ, Fry DE (1987) Effective hepatic blood flow and hepatic bioenergy status in murine peritonitis. J Surg Res 42:33–38

    Article  PubMed  CAS  Google Scholar 

  35. Mela L, Bacalzo LV Jr, Miller LD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220:571–577

    PubMed  CAS  Google Scholar 

  36. Astiz M, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26:311–320

    PubMed  CAS  Google Scholar 

  37. van Lanschot JJB, Mealy K, Wilmore DW (1990) The effects of tumor necrosis factor on intestinal structure and metabolism. Ann Surg 212:663–670

    Article  PubMed  Google Scholar 

  38. Hsueh W, Gonzalez-Crussi F, Arroyave JL (1987) Platelet activating factor is an endogenous mediator for bowel necrosis in endotoxemia. FASEB J 1:403–405

    PubMed  CAS  Google Scholar 

  39. Kampp M, Lundgren O (1968) Blood flow and flow distribution in the small intestine of the cat as analyzed by the Kr85 washout technique. Acta Physiol Scan 72:282–296

    Article  CAS  Google Scholar 

  40. Bohlen HG (1980) Intestinal tissue PO2 and microvascular responses during glucose exposure. Am J Physiol 238:164–171

    Google Scholar 

  41. Lundgren O, Svanvik J (1973) Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol Scand 88:551–563

    Article  PubMed  CAS  Google Scholar 

  42. Spragg RG, Hinshaw DB, Hyslop PA, Schraufstatter IU, Cochrane CG (1985) Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells and oxi-dant injury. J Clin Invest 76:1471–1476

    Article  PubMed  CAS  Google Scholar 

  43. Hinshaw DB, Burger JM, Delius RE, Hyslop PA (1990) Mechanism of protection of oxidant-injured endothelial cells by glutamine. Surgery 108:298–305

    PubMed  CAS  Google Scholar 

  44. Schmelling DJ, Caty MG, Oldham KT, Guice KS, Hinshaw DB (1989) Evidence for neutro-phil-related acute lung injury after intestinal ischemia-reperfusion. Surgery 106:195–202

    Google Scholar 

  45. Hyslop PA, Hinshaw DB, Halsey WA Jr et al. (1988) Mechanisms of oxidant-mediated cell injury: the glycolytic and mitochondrial pathways of ADP phosphorylation are major intra-cellular targets inactivated by hydrogen peroxide. J Biol Chem 263:1665–1675

    PubMed  CAS  Google Scholar 

  46. Broadie AE, Reed DJ (1987) Reversible oxidation of glyceraldehyde 3-phosphate dehydrogen-ase thiols in human lung carcinoma cells by hydrogen peroxide. Biochem Biophys Res Commun 148:120–125

    Article  Google Scholar 

  47. Baker MS, Feigan J, Lowther DA (1989) The mechanism of chondrocyte hydrogen peroxide damage: depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde 3-phosphate dehydrogenase. J Rheumatol 16:7–14

    PubMed  CAS  Google Scholar 

  48. Hinshaw DB, Sklar LA, Bohl B et al. (1986) Cytoskeletal and morphological impact of cellular oxidant injury. Am J Pathol 123:454–464

    PubMed  CAS  Google Scholar 

  49. Carden DL, Smith JK, Zimmerman BJ, Korthuis RJ, Granger DN (1989) Reperfusion injury following circulatory collapse: the role of reactive oxygen metabolites. J Crit Care 4:294–307

    Article  CAS  Google Scholar 

  50. Parks DA, Granger DN (1986) Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol 250:749–753

    Google Scholar 

  51. Grisham MB, Hernandez LA, Granger DN (1986) Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 251:567–574

    Google Scholar 

  52. Deitch EA, Taylor M, Grisham M, Ma L, Bridges W, Berg R (1989) Endotoxin induces bacterial translocation and increases xanthine oxidase activity. J Trauma 29:1679–1683

    Article  PubMed  CAS  Google Scholar 

  53. Deitch EA, Ma WJ, Ma L, Berg R, Specian RD (1989) Endotoxin-induced bacterial translocation: A study of mechanisms. Surgery 106:292–300

    PubMed  CAS  Google Scholar 

  54. Deitch EA, Ma L, Ma WJ et al. (1989) Inhibition of endotoxin-induced bacterial translocation in mice. J Clin Invest 84:36–42

    Article  PubMed  CAS  Google Scholar 

  55. Arvidsson S, Falk K, Marklund S, Haglund U (1985) Role of free oxygen radicals in the development of gastro-intestinal mucosal damage in Escherichia coli sepsis. Circ Shock 16:383–393

    PubMed  CAS  Google Scholar 

  56. Klebanoff SJ, Vadas MA, Harlan JM et al. (1986) Stimulation of neutrophils by tumor necrosis factor. J Immunol 136:4220–4225

    PubMed  CAS  Google Scholar 

  57. Shalaby MR, Aggarwal BB, Rinderknecht E et al. (1985) Activation of human polymorpho-nuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol 135:2069–2073

    PubMed  CAS  Google Scholar 

  58. Moore FD Jr, Socher SH, Davis C (1991) Tumor necrosis factor and endotoxin can cause neutrophil activation through separate pathways. Arch Surg 126:70–73

    Article  PubMed  CAS  Google Scholar 

  59. Guthrie LA, McPhail LC, Henson PM, Johnston RB (1985) Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharides. J Exp Med 160:1656–1671

    Article  Google Scholar 

  60. Vercellotti GM, Yin HQ, Gustafson KS, Nelson RD, Jacob HS (1988) Platelet-activating factor primes neutrophil responses to agonists: Role in promoting neutrophil-mediated endothe-lial damage. Blood 71:1100–1107

    PubMed  CAS  Google Scholar 

  61. Carlos TM, Harlan JM (1990) Membrane proteins involved in phagocyte adherence to endo-thelium. Immunol Rev 114:5–28

    Article  PubMed  CAS  Google Scholar 

  62. Nash S, Stafford J, Madara JL (1987) Effects of polymorphonuclear leukocyte transmigration on the barrier function of cultured intestinal epithelial monolayers. J Clin Invest 80:1104–1113

    Article  PubMed  CAS  Google Scholar 

  63. Nash S, Stafford J, Madara JL (1988) The selective and superoxide-independent disruption of intestinal epithelial tight junctions during leukocyte transmigration. Lab Invest 59:531–537

    PubMed  CAS  Google Scholar 

  64. Souba WW, Klimberg VS, Plumley DA et al. (1990) Current Research Review: The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J Surg Res 48:383–391

    Article  PubMed  CAS  Google Scholar 

  65. Souba WW, Herskowitz K, Klimberg VS et al. (1990) The effects of sepsis and endotoxemia on gut glutamine metabolism. Ann Surg 211:543–551

    Article  PubMed  CAS  Google Scholar 

  66. Salloum RM, Copeland EM, Souba WW (1991) Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg 213:401–410

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fink, M.P. (1992). Alterations in Gastrointestinal Barrier Function in Sepsis: The Effect of Lipopolysaccharide on Mucosal Permeability to Hydrophilic Solutes. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1992. Yearbook of Intensive Care and Emergency Medicine, vol 1992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84734-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84734-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55241-3

  • Online ISBN: 978-3-642-84734-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics