Skip to main content

Broadband CARS Probe Using the Picosecond Continuum

  • Conference paper
Picosecond Phenomena III

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 23))

Abstract

Coherent antistokes Raman scattering (CARS) provides a potentially useful diagnostic approach to the identification and study of transient molecular fragment species produced as the primary events in UV laser photolysis of molecules. GROSS, GUTHALS, and NIBLER [1] applied nanosecond dye laser techniques to obtain scanned as well as broadband single-shot CARS spectra of transient species from 266-nm photolysis of benzene vapor and derivatives. This work was extended to the picosecond time scale by HETHERINGTON III, KORENOWSKI, and EISENTHAL [2] who used optical parametric generation to provide tunable frequency Stokes pulses for a point-by-point probe of the photolysis spectrum. Earlier, GREEN, WEISMAN, and HOCHSTRASSER [3] had demonstrated single frequency picosecond CARS measurements in molecular nitrogen. In the present paper, development of a broadband picosecond CARS probe technique is reported. The method uses the picosecond white-light continuum [4] as Stokes light and enables an extensive antistokes spectrum to be obtained in a single 5-ps laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. P. Gross, D. M. Guthals, and J. W. Nibler, J. Chem. Phys. 70, 4673 (1979).

    Article  CAS  Google Scholar 

  2. W. M. Hetherington III, G. M. Korenowski, and K. B. Eisenthal, Chem. Phys. Lett. 77, 275 (1981).

    Article  CAS  Google Scholar 

  3. B. I. Greene, R. B. Weisman, and R. M. Hochstrasser, Chem. Phys. Lett. 59, 5 (1978).

    Article  CAS  Google Scholar 

  4. The continuum has previously been applied to inverse Raman scattering; R. R. Alfano and S. L. Shapiro, Chem. Phys. Lett. 8, 631 (1971).

    Article  CAS  Google Scholar 

  5. L. S. Goldberg, P. E. Schoen, and M. J. Marrone, Appl. Optics 21, 1474 (1982).

    Article  CAS  Google Scholar 

  6. U. Boesl, H. J. Neusser, and E. W. Schlag, J. Chem. Phys. 72, 4327 (1980).

    Article  CAS  Google Scholar 

  7. P. Hering, A. G. M Maaswinkel, and K. L. Kompa, Chem. Phys. Lett. 83, 222 (1981).

    Article  CAS  Google Scholar 

  8. S. A. J. Druet, B. Attal, T. K. Gustafson, and J. P. E. Taran, Phys. Rev. A18, 1529 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, L.S. (1982). Broadband CARS Probe Using the Picosecond Continuum. In: Eisenthal, K.B., Hochstrasser, R.M., Kaiser, W., Laubereau, A. (eds) Picosecond Phenomena III. Springer Series in Chemical Physics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87864-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87864-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87866-4

  • Online ISBN: 978-3-642-87864-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics